Skip to main content
Top
Published in: Wireless Networks 6/2014

01-08-2014

Cooperative signal amplification for molecular communication in nanonetworks

Authors: Sergi Abadal, Ignacio Llatser, Eduard Alarcón, Albert Cabellos-Aparicio

Published in: Wireless Networks | Issue 6/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotechnology is enabling the development of devices in a scale ranging from a few to hundreds of nanometers. Communication between these devices greatly expands the possible applications, increasing the complexity and range of operation of the system. In particular, the resulting nanocommunication networks (or nanonetworks) show great potential for applications in the biomedical field, in which diffusion-based molecular communication is regarded as a promising alternative to EM-based solutions due to the bio-stability and energy-related requirements of this scenario. However, molecular signals suffer a significant amount of attenuation as they propagate through the medium, thus limiting the transmission range. In this paper, a signal amplification scheme for molecular communication nanonetworks is presented wherein a group of emitters jointly transmits a given signal after achieving synchronization. This is achieved by means of quorum sensing (QS), a method used by bacteria to both sense their population and coordinate their actions. By using the proposed methodology, the transmission range is extended proportionally to the number of synchronized emitters. An analytical model of QS is provided and validated through simulation. This model is the main contribution of this work and accounts for the activation threshold (which will eventually determine the resulting amplification level) and the delay of the synchronization process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In this case, only free space electromagnetic radiation was considered.
 
Literature
1.
go back to reference Abadal, S., & Akyildiz, I. F. (2011). Automata modeling of quorum sensing for nanocommunication networks. Nano Communication Networks, 2(1), 74–83.CrossRef Abadal, S., & Akyildiz, I. F. (2011). Automata modeling of quorum sensing for nanocommunication networks. Nano Communication Networks, 2(1), 74–83.CrossRef
2.
go back to reference Abadal, S., & Akyildiz, I. F. (2011). Bio-inspired synchronization for nanocommunication networks. In IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–5), Houston, TX, USA. Abadal, S., & Akyildiz, I. F. (2011). Bio-inspired synchronization for nanocommunication networks. In IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–5), Houston, TX, USA.
3.
go back to reference Abadal, S., Llatser, I., Alarcón, E., & Cabellos-Aparicio, A. (2012). Quorum sensing-enabled amplification for molecular nanonetworks. In Proceedings of the 2nd IEEE international workshop on molecular and nano-scale communications, held in conjunction with IEEE ICC. Abadal, S., Llatser, I., Alarcón, E., & Cabellos-Aparicio, A. (2012). Quorum sensing-enabled amplification for molecular nanonetworks. In Proceedings of the 2nd IEEE international workshop on molecular and nano-scale communications, held in conjunction with IEEE ICC.
5.
go back to reference Akyildiz, I. F., Fekri, F., Sivakumar, R., Forest, C. R., Hammer, B. K. (2012). MoNaCo: Fundamentals of molecular nano-communication networks. IEEE Wireless Communications, 19(5), 12–18.CrossRef Akyildiz, I. F., Fekri, F., Sivakumar, R., Forest, C. R., Hammer, B. K. (2012). MoNaCo: Fundamentals of molecular nano-communication networks. IEEE Wireless Communications, 19(5), 12–18.CrossRef
6.
go back to reference Akyildiz, I. F., Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.CrossRef Akyildiz, I. F., Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.CrossRef
7.
go back to reference Akyildiz, I. F., Jornet, J. M. (2010). The internet of nano-things. Wireless Communications, IEEE, 17(6), 58–63.CrossRef Akyildiz, I. F., Jornet, J. M. (2010). The internet of nano-things. Wireless Communications, IEEE, 17(6), 58–63.CrossRef
9.
go back to reference Bossert, W. H., Wilson, E. O. (1963). The analysis of olfactory communication among animals. Journal of theoretical biology, 5(3), 443–69.CrossRef Bossert, W. H., Wilson, E. O. (1963). The analysis of olfactory communication among animals. Journal of theoretical biology, 5(3), 443–69.CrossRef
11.
go back to reference Devreotes, P., Derstine, P., Steck, T. (1979). Cyclic 3′, 5′AMP relay in Dictyostelium discoideum. The Journal of cell biology, 80(2), 291–299.CrossRef Devreotes, P., Derstine, P., Steck, T. (1979). Cyclic 3′, 5′AMP relay in Dictyostelium discoideum. The Journal of cell biology, 80(2), 291–299.CrossRef
13.
go back to reference Fuqua, C., Winans, S., Greenberg, P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulatorst. Journal of Bacteriology, 176(2), 269–275. Fuqua, C., Winans, S., Greenberg, P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulatorst. Journal of Bacteriology, 176(2), 269–275.
14.
go back to reference Garralda, N., Llatser, I., Cabellos-Aparicio, A., Pierobon, M. (2011). Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks. In Proceedings of the 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM. Garralda, N., Llatser, I., Cabellos-Aparicio, A., Pierobon, M. (2011). Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks. In Proceedings of the 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM.
15.
go back to reference Goryachev, A. B., Toh, D. J., Wee, K. B., Lee, T., Zhang, H. B., Zhang, L. H. (2005). Transition to quorum sensing in an agrobacterium population: A stochastic model. PLoS Computational Biology, 1(4), 265–275.CrossRef Goryachev, A. B., Toh, D. J., Wee, K. B., Lee, T., Zhang, H. B., Zhang, L. H. (2005). Transition to quorum sensing in an agrobacterium population: A stochastic model. PLoS Computational Biology, 1(4), 265–275.CrossRef
16.
go back to reference Henke, J., Bassler, B. (2004). Bacterial social engagements. Trends in Cell Biology, 14(11), 648–656.CrossRef Henke, J., Bassler, B. (2004). Bacterial social engagements. Trends in Cell Biology, 14(11), 648–656.CrossRef
17.
go back to reference Hong, Y. W., Scaglione, A. (2003). Time synchronization and reach-back communications with pulse-coupled oscillators for UWB wireless ad hoc networks. In Proceedings of the IEEE conference on ultra wideband systems and technologies (pp. 190–194), IEEE. doi:10.1109/UWBST.2003.1267830. Hong, Y. W., Scaglione, A. (2003). Time synchronization and reach-back communications with pulse-coupled oscillators for UWB wireless ad hoc networks. In Proceedings of the IEEE conference on ultra wideband systems and technologies (pp. 190–194), IEEE. doi:10.​1109/​UWBST.​2003.​1267830.
18.
go back to reference Yeh, H. -Y. (2009). Real-time molecular methods to detect infectious viruses. Seminars in cell developmental biology, 20(1), 49–54.CrossRef Yeh, H. -Y. (2009). Real-time molecular methods to detect infectious viruses. Seminars in cell developmental biology, 20(1), 49–54.CrossRef
19.
go back to reference Jornet, J. M., Akyildiz, I. F. (2010). Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In EUCAP (ed.) Proceedings of 4th European conference on antennas and propagation. Barcelona. Jornet, J. M., Akyildiz, I. F. (2010). Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In EUCAP (ed.) Proceedings of 4th European conference on antennas and propagation. Barcelona.
20.
go back to reference Jornet, J. M., Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef Jornet, J. M., Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRef
21.
go back to reference Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M. (2005). An appealing computational mechanism drawn from bacterial quorum sensing. Bulletin of the EATCS, 85, 135–148.MATHMathSciNet Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M. (2005). An appealing computational mechanism drawn from bacterial quorum sensing. Bulletin of the EATCS, 85, 135–148.MATHMathSciNet
22.
go back to reference Kuran, M. Ş., Yilmaz, H. B., Tugcu, T., Akyildiz, I. F. (2011). Modulation techniques for communication via diffusion in nanonetworks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5), IEEE. doi:10.1109/icc.2011.5962989. Kuran, M. Ş., Yilmaz, H. B., Tugcu, T., Akyildiz, I. F. (2011). Modulation techniques for communication via diffusion in nanonetworks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5), IEEE. doi:10.​1109/​icc.​2011.​5962989.
24.
go back to reference Llatser, I., Alarcón, E., & Pierobon, M. (2011). Diffusion-based channel characterization in molecular nanonetworks. In Proceedings of the 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM. Llatser, I., Alarcón, E., & Pierobon, M. (2011). Diffusion-based channel characterization in molecular nanonetworks. In Proceedings of the 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM.
25.
go back to reference Llatser, I., Pascual, I., Garralda, N., Cabellos-aparicio, A., Pierobon, M., Alarcón, E., & Solé-Pareta, J. (2011). Exploring the physical channel of diffusion-based molecular communication by simulation. In IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–5), Houston, TX, USA. Llatser, I., Pascual, I., Garralda, N., Cabellos-aparicio, A., Pierobon, M., Alarcón, E., & Solé-Pareta, J. (2011). Exploring the physical channel of diffusion-based molecular communication by simulation. In IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–5), Houston, TX, USA.
27.
go back to reference Moore, M., Enomoto, A., Nakano, T., Okaie, Y., & Suda, T. (2007). Interfacing with nanomachines through molecular communication. IEEE international conference on systems man and cybernetics, pp. 18–23. Moore, M., Enomoto, A., Nakano, T., Okaie, Y., & Suda, T. (2007). Interfacing with nanomachines through molecular communication. IEEE international conference on systems man and cybernetics, pp. 18–23.
28.
go back to reference Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM, pp. 501–506. Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM, pp. 501–506.
29.
go back to reference Nakano, T., & Suda, T. (2007). Molecular communication through gap junction channels: System design, experiments and modeling. 2nd Bio-Inspired models of network, information and computing systems, pp. 139–146. doi:10.1109/BIMNICS.2007.4610100. Nakano, T., & Suda, T. (2007). Molecular communication through gap junction channels: System design, experiments and modeling. 2nd Bio-Inspired models of network, information and computing systems, pp. 139–146. doi:10.​1109/​BIMNICS.​2007.​4610100.
30.
go back to reference Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In Proceedings of the Fifth IEEE conference on nanotechnology (pp. 478–481). Citeseer, Nagoya, Japan. Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In Proceedings of the Fifth IEEE conference on nanotechnology (pp. 478–481). Citeseer, Nagoya, Japan.
31.
go back to reference Parcerisa, L., & Akyildiz, I. F. (2009). Molecular communication options for long range nanonetworks. Computer Networks, 53(16), 2753–2766.CrossRef Parcerisa, L., & Akyildiz, I. F. (2009). Molecular communication options for long range nanonetworks. Computer Networks, 53(16), 2753–2766.CrossRef
32.
go back to reference Philibert, J. (2006). One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundamentals, 4(6), 1–19. Philibert, J. (2006). One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundamentals, 4(6), 1–19.
33.
go back to reference Pierobon, M., Akyildiz, I. F. (2010). A physical end-to-end model for molecular communication in nanonetworks. IEEE Journal on Selected Areas in Communications (JSAC), 28(4), 602–611.CrossRef Pierobon, M., Akyildiz, I. F. (2010). A physical end-to-end model for molecular communication in nanonetworks. IEEE Journal on Selected Areas in Communications (JSAC), 28(4), 602–611.CrossRef
34.
go back to reference Pierobon, M., Akyildiz, I. F. (2011). Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Transactions on Signal Processing, 59(6), 2532–47.CrossRefMathSciNet Pierobon, M., Akyildiz, I. F. (2011). Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Transactions on Signal Processing, 59(6), 2532–47.CrossRefMathSciNet
35.
go back to reference Pierobon, M., Akyildiz, I. F. (2011). Information capacity of diffusion-based molecular communication in nanonetworks. In Proceedings of IEEE INFOCOM Miniconference, pp. 2–6. Pierobon, M., Akyildiz, I. F. (2011). Information capacity of diffusion-based molecular communication in nanonetworks. In Proceedings of IEEE INFOCOM Miniconference, pp. 2–6.
36.
go back to reference Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S., Hasty, J. (2012). A sensing array of radically coupled genetic biopixels. Nature, 481(0), 39–44. Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S., Hasty, J. (2012). A sensing array of radically coupled genetic biopixels. Nature, 481(0), 39–44.
37.
go back to reference Rutherglen, C., Burke, P. (2009). Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes. Small (Weinheim an der Bergstrasse, Germany), 5(8), 884–906. doi:10.1002/smll.200800527.CrossRef Rutherglen, C., Burke, P. (2009). Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes. Small (Weinheim an der Bergstrasse, Germany), 5(8), 884–906. doi:10.​1002/​smll.​200800527.CrossRef
38.
go back to reference Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–5. doi:10.1038/nmat1967.CrossRef Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–5. doi:10.​1038/​nmat1967.CrossRef
39.
40.
go back to reference Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A. (2005). Exploratory research on molecular communication between nanomachines. In Genetic and evolutionary computation conference (GECCO). Late breaking papers, June (2005). Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A. (2005). Exploratory research on molecular communication between nanomachines. In Genetic and evolutionary computation conference (GECCO). Late breaking papers, June (2005).
41.
go back to reference Ugalde, U. (2006). Autoregulatory signals in Mycelial Fungi. The Mycota, 1(2), 203–213.CrossRef Ugalde, U. (2006). Autoregulatory signals in Mycelial Fungi. The Mycota, 1(2), 203–213.CrossRef
42.
go back to reference Xavier, K., Bassler, B. (2003). LuxS quorum sensing: More than just a numbers game. Current opinion in microbiology, 6(2), 191–197.CrossRef Xavier, K., Bassler, B. (2003). LuxS quorum sensing: More than just a numbers game. Current opinion in microbiology, 6(2), 191–197.CrossRef
Metadata
Title
Cooperative signal amplification for molecular communication in nanonetworks
Authors
Sergi Abadal
Ignacio Llatser
Eduard Alarcón
Albert Cabellos-Aparicio
Publication date
01-08-2014
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2014
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-014-0696-z

Other articles of this Issue 6/2014

Wireless Networks 6/2014 Go to the issue