Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2013

01-03-2013

Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

Authors: Nedal Mohamed, Mohamed Boulfiza, Richard Evitts

Published in: Journal of Materials Engineering and Performance | Issue 3/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Alonso, M. Castellote, and C. Andrade, Chloride Threshold Dependence of Pitting Potential of Reinforcements, Electrochim. Acta, 2002, 47(21), p 3469–3481CrossRef C. Alonso, M. Castellote, and C. Andrade, Chloride Threshold Dependence of Pitting Potential of Reinforcements, Electrochim. Acta, 2002, 47(21), p 3469–3481CrossRef
2.
go back to reference M.G. Alvarez and J.A. Galvele, The Mechanism of Pitting of High Purity Iron in NaCl Solutions, Corros. Sci., 1984, 24(1), p 27–48CrossRef M.G. Alvarez and J.A. Galvele, The Mechanism of Pitting of High Purity Iron in NaCl Solutions, Corros. Sci., 1984, 24(1), p 27–48CrossRef
3.
go back to reference M.C. Andrade and J.A. Gonzalez, Andrade, Determinacion Electroquimica de la Velocidad de Corrosion de un Acero de Construccion, Mater. Constr., 1977, 168, p 1–6 M.C. Andrade and J.A. Gonzalez, Andrade, Determinacion Electroquimica de la Velocidad de Corrosion de un Acero de Construccion, Mater. Constr., 1977, 168, p 1–6
4.
go back to reference A. Bautista, G. Blanco, F. Velasco, A. Gutierrez, L. Soriano, F.J. Palomares, and H. Takenouti, Changes in the Passive Layer of Corrugated Austenitic Stainless Steel of Low Nickel Content due to Exposure to Simulated Pore Solutions, Corros. Sci., 2009, 51(4), p 785–792 A. Bautista, G. Blanco, F. Velasco, A. Gutierrez, L. Soriano, F.J. Palomares, and H. Takenouti, Changes in the Passive Layer of Corrugated Austenitic Stainless Steel of Low Nickel Content due to Exposure to Simulated Pore Solutions, Corros. Sci., 2009, 51(4), p 785–792
5.
go back to reference Z.P. Bazant, Physical Model for Steel Corrosion in Concrete Sea Structures Theory, ASCE J. Stru. Div., 105, 1979, p 1137–1153 Z.P. Bazant, Physical Model for Steel Corrosion in Concrete Sea Structures Theory, ASCE J. Stru. Div., 105, 1979, p 1137–1153
6.
go back to reference J. Beddoes, Introduction to Stainless Steels, ASM International, Materials Park, OH, 1999 J. Beddoes, Introduction to Stainless Steels, ASM International, Materials Park, OH, 1999
7.
go back to reference L. Bertolini, Corrosion of Reinforcement in Concrete Construction, Royal Society of Chemistry, Cambridge, 1996 L. Bertolini, Corrosion of Reinforcement in Concrete Construction, Royal Society of Chemistry, Cambridge, 1996
8.
go back to reference L. Bertolini, F. Bolzoni, T. Pastore, and P. Pedeferri, Behaviour of Stainless Steel in Simulated Concrete Pore Solution, Br. Corros. J., 1996, 31(3), p 218–222CrossRef L. Bertolini, F. Bolzoni, T. Pastore, and P. Pedeferri, Behaviour of Stainless Steel in Simulated Concrete Pore Solution, Br. Corros. J., 1996, 31(3), p 218–222CrossRef
9.
go back to reference G. Blanco, A. Bautista, and H. Takenouti, EIS Study of Passivation of Austenitic and Duplex Stainless Steels Reinforcements in Simulated Pore Solutions, Cem. Concr. Compos., 2006, 28(3), p 212–219CrossRef G. Blanco, A. Bautista, and H. Takenouti, EIS Study of Passivation of Austenitic and Duplex Stainless Steels Reinforcements in Simulated Pore Solutions, Cem. Concr. Compos., 2006, 28(3), p 212–219CrossRef
10.
go back to reference J.P. Broomfield, Corrosion of Steel in Concrete: Understanding, Investigation, and Repair, E & FN Spon, London, 1997CrossRef J.P. Broomfield, Corrosion of Steel in Concrete: Understanding, Investigation, and Repair, E & FN Spon, London, 1997CrossRef
11.
go back to reference K.C. Clear, Measuring the Rate of Corrosion of Steel in Field Concrete Structures, Transportation Research Record 1211, Transportation Research Board, National Research Council, Washington, DC, 1989 K.C. Clear, Measuring the Rate of Corrosion of Steel in Field Concrete Structures, Transportation Research Record 1211, Transportation Research Board, National Research Council, Washington, DC, 1989
12.
go back to reference G.G. Clemena and Y.P. Virmani, Comparing the Chloride Resistances of Reinforcing Bars: Evaluating New, Economical Metallic Reinforcement for its Ability to Withstand High Salt Concentrations, Concr. Int., 2004, 26, p 39–49 G.G. Clemena and Y.P. Virmani, Comparing the Chloride Resistances of Reinforcing Bars: Evaluating New, Economical Metallic Reinforcement for its Ability to Withstand High Salt Concentrations, Concr. Int., 2004, 26, p 39–49
13.
go back to reference H.A.F. Dehwah, M. Maslehuddin, and S.A. Austin, Effect of Cement Alkalinity on Pore Solution Chemistry and Chloride-Induced Reinforcement Corrosion, ACI, Mater. J., 2002, 99(3), p 227–233 H.A.F. Dehwah, M. Maslehuddin, and S.A. Austin, Effect of Cement Alkalinity on Pore Solution Chemistry and Chloride-Induced Reinforcement Corrosion, ACI, Mater. J., 2002, 99(3), p 227–233
14.
go back to reference G.K. Glass, B. Reddy, and N.R. Buenfeld, The Participation of Bound Chloride in Passive Film Breakdown on Steel in Concrete, Corros. Sci., 2000, 42(11), p 2013–2021CrossRef G.K. Glass, B. Reddy, and N.R. Buenfeld, The Participation of Bound Chloride in Passive Film Breakdown on Steel in Concrete, Corros. Sci., 2000, 42(11), p 2013–2021CrossRef
15.
go back to reference L. Gong, D. Darwin, J.P. Browning, and C.E. Locke, Evaluation of Mechanical and Corrosion Properties of MMFX Reinforcing Steel for Concrete, Rep. No. FHWA-KS-02-8, Kansas Department of Transportation, USA, 2004 L. Gong, D. Darwin, J.P. Browning, and C.E. Locke, Evaluation of Mechanical and Corrosion Properties of MMFX Reinforcing Steel for Concrete, Rep. No. FHWA-KS-02-8, Kansas Department of Transportation, USA, 2004
16.
go back to reference S. Goni, and C. Andrade, Synthetic Concrete Pore Solution Chemistry and Rebar Corrosion Rate in the Presence of Chlorides, Cem. Concr. Res., 1990, 20, p 525–539 S. Goni, and C. Andrade, Synthetic Concrete Pore Solution Chemistry and Rebar Corrosion Rate in the Presence of Chlorides, Cem. Concr. Res., 1990, 20, p 525–539
17.
go back to reference J.A. Gonzalez, C. Andrade, C. Alonso, and S. Feliu, Comparison of Rates of General Corrosion and Maximum Pitting Penetration on Concrete Embedded Steel Reinforcement, Cem. Concr. Res., 1995, 25(2), p 257–264CrossRef J.A. Gonzalez, C. Andrade, C. Alonso, and S. Feliu, Comparison of Rates of General Corrosion and Maximum Pitting Penetration on Concrete Embedded Steel Reinforcement, Cem. Concr. Res., 1995, 25(2), p 257–264CrossRef
18.
go back to reference V.K. Gouda and W.Y. Halaka, Corrosion and Corrosion Inhibition of Reinforcing Steel-2, Br. Corros. J., 1970, 5(5), p 204–208CrossRef V.K. Gouda and W.Y. Halaka, Corrosion and Corrosion Inhibition of Reinforcing Steel-2, Br. Corros. J., 1970, 5(5), p 204–208CrossRef
19.
go back to reference D.A. Hausmann, Steel Corrosion in Concrete—How Does It Occur, Mater. Prot., 1967, 6(11), p 19–23 D.A. Hausmann, Steel Corrosion in Concrete—How Does It Occur, Mater. Prot., 1967, 6(11), p 19–23
20.
go back to reference M.F. Hurley, Corrosion Initiation and Propagation Behavior of Corrosion Resistant Concrete Reinforcing Materials. Doctoral dissertation. University of Virginia, Material Science and Engineering, Charlottesville, 2007 M.F. Hurley, Corrosion Initiation and Propagation Behavior of Corrosion Resistant Concrete Reinforcing Materials. Doctoral dissertation. University of Virginia, Material Science and Engineering, Charlottesville, 2007
21.
go back to reference T. Ishikawa, B. Bresler, and I. Cornet, Mechanism of Steel Corrosion in Concrete Structures, Mater. Prot., 1968, 7(3), p 45–47 T. Ishikawa, B. Bresler, and I. Cornet, Mechanism of Steel Corrosion in Concrete Structures, Mater. Prot., 1968, 7(3), p 45–47
22.
go back to reference J. Jing, Corrosion Resistance of Micro-Composite and Duplex Stainless Steels for Reinforced Concrete Bridge Decks. PhD thesis, University of Kansas, USA, 2006 J. Jing, Corrosion Resistance of Micro-Composite and Duplex Stainless Steels for Reinforced Concrete Bridge Decks. PhD thesis, University of Kansas, USA, 2006
23.
go back to reference D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Englewood Cliffs, NJ, 1996 D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Englewood Cliffs, NJ, 1996
24.
go back to reference S. Kahl, Corrosion Resistant Alloy Steel (MMFX) Reinforcing Bar in Bridge Decks, Rep. No. R-1499, Michigan Department of Transportation, USA, 2007 S. Kahl, Corrosion Resistant Alloy Steel (MMFX) Reinforcing Bar in Bridge Decks, Rep. No. R-1499, Michigan Department of Transportation, USA, 2007
25.
go back to reference L. Li and A.A. Sagues, Chloride Corrosion Threshold of Reinforcing Steel in Alkaline Solutions—Open-Circuit Immersion Tests, Corrosion, 2001, 57(1), p 19–28CrossRef L. Li and A.A. Sagues, Chloride Corrosion Threshold of Reinforcing Steel in Alkaline Solutions—Open-Circuit Immersion Tests, Corrosion, 2001, 57(1), p 19–28CrossRef
26.
go back to reference Y. Liu, Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures, PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1996 Y. Liu, Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures, PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1996
27.
go back to reference W. López and J.A. Gonzalez, Influence of the Degree of Pore Saturation on the Resistivity of Concrete and the Corrosion Rate of Steel Reinforcement, Cem. Concr. Res., 1993, 23(2), p 368–376CrossRef W. López and J.A. Gonzalez, Influence of the Degree of Pore Saturation on the Resistivity of Concrete and the Corrosion Rate of Steel Reinforcement, Cem. Concr. Res., 1993, 23(2), p 368–376CrossRef
28.
go back to reference L. Mammoliti, Corrosion Inhibitors in Concrete Part II: Effect on Chloride Threshold Values for Corrosion of Steel in Synthetic Pore Solutions, Cem. Concr. Res., 1999, 29(10), p 1583–1589CrossRef L. Mammoliti, Corrosion Inhibitors in Concrete Part II: Effect on Chloride Threshold Values for Corrosion of Steel in Synthetic Pore Solutions, Cem. Concr. Res., 1999, 29(10), p 1583–1589CrossRef
29.
go back to reference N. Mohamed, Comparative Study of the Corrosion Behavior of Conventional Carbon Steel and Corrosion Resistant Reinforcing Bars. Master’s dissertation. University of Saskatchewan, Civil and Geological Engineering, Saskatoon, SK, Canada, 2009 N. Mohamed, Comparative Study of the Corrosion Behavior of Conventional Carbon Steel and Corrosion Resistant Reinforcing Bars. Master’s dissertation. University of Saskatchewan, Civil and Geological Engineering, Saskatoon, SK, Canada, 2009
30.
go back to reference T.U. Mohammed and H. Hamada, Corrosion of Steel Bars in Concrete with Various Steel Surface Conditions, ACI, Mater. J., 2006, 103(4), p 233–242 T.U. Mohammed and H. Hamada, Corrosion of Steel Bars in Concrete with Various Steel Surface Conditions, ACI, Mater. J., 2006, 103(4), p 233–242
31.
go back to reference V. Nachiappan and E.H. Cho, Corrosion of High Chromium and Conventional Steels Embedded in Concrete, J. Perform. Constr. Facil., 2005, 19(1), p 56–61CrossRef V. Nachiappan and E.H. Cho, Corrosion of High Chromium and Conventional Steels Embedded in Concrete, J. Perform. Constr. Facil., 2005, 19(1), p 56–61CrossRef
32.
go back to reference P. Pernice, A. Aronne, and S. Muscetta, Behaviour of Stainless Steel in Ca(OH)2 Saturated Solution Containing Chlorides, J. Mater. Sci. Lett., 1994, 13(4), p 289–290CrossRef P. Pernice, A. Aronne, and S. Muscetta, Behaviour of Stainless Steel in Ca(OH)2 Saturated Solution Containing Chlorides, J. Mater. Sci. Lett., 1994, 13(4), p 289–290CrossRef
33.
go back to reference D. Pfeifer, High Performance Concrete and Reinforcing Steel with a 100-Year Service Life, PCI, J., 2000, 45(3), p 46–54 D. Pfeifer, High Performance Concrete and Reinforcing Steel with a 100-Year Service Life, PCI, J., 2000, 45(3), p 46–54
34.
go back to reference M. Pourbaix, Theoretical and Experimental Considerations in Corrosion Testing, Corros. Sci., 1972, 12(2), p 161–190CrossRef M. Pourbaix, Theoretical and Experimental Considerations in Corrosion Testing, Corros. Sci., 1972, 12(2), p 161–190CrossRef
35.
go back to reference S. Qian, D. Cusson, N. Chagnon, and B. Baldock, Corrosion-Inhibiting Systems for Durable Concrete Bridges. II: Accelerated Laboratory Investigation, J. Mater. Civ. Eng., 2008, 20(1), p 29–36CrossRef S. Qian, D. Cusson, N. Chagnon, and B. Baldock, Corrosion-Inhibiting Systems for Durable Concrete Bridges. II: Accelerated Laboratory Investigation, J. Mater. Civ. Eng., 2008, 20(1), p 29–36CrossRef
36.
go back to reference G. Sahoo and R. Balasubramaniam, On the Corrosion Behaviour of Phosphoric Irons in Simulated Concrete Pore Solution, Corros. Sci., 2008, 50(1), p 131–143CrossRef G. Sahoo and R. Balasubramaniam, On the Corrosion Behaviour of Phosphoric Irons in Simulated Concrete Pore Solution, Corros. Sci., 2008, 50(1), p 131–143CrossRef
37.
go back to reference M. Saremi and E. Mahallati, A Study on Chloride-Induced Depassivation of Mild Steel in Simulated Concrete Pore Solution, Cem. Concr. Res., 2002, 32(12), p 1915–1921CrossRef M. Saremi and E. Mahallati, A Study on Chloride-Induced Depassivation of Mild Steel in Simulated Concrete Pore Solution, Cem. Concr. Res., 2002, 32(12), p 1915–1921CrossRef
38.
go back to reference D. Trejo and R.G. Pillai, Accelerated Chloride Threshold Testing: Part I—ASTM A 615 and A 706 Reinforcement, ACI, Mater. J., 2003, 100(6), p 519–527 D. Trejo and R.G. Pillai, Accelerated Chloride Threshold Testing: Part I—ASTM A 615 and A 706 Reinforcement, ACI, Mater. J., 2003, 100(6), p 519–527
39.
go back to reference D. Trejo and R. Pillai, Accelerated Chloride Threshold Testing—Part II: Corrosion-Resistant Reinforcement, ACI, Mater. J., 2004, 101(1), p 57–64 D. Trejo and R. Pillai, Accelerated Chloride Threshold Testing—Part II: Corrosion-Resistant Reinforcement, ACI, Mater. J., 2004, 101(1), p 57–64
40.
go back to reference K. Tuutti, Analysis of Pore Solution Squeezed Out of Cement and Mortar. Proc. lnternationales Kolloquium Chlorid korrosion, Wien, 1983, Forschungsinstitut des Vereins der Oesterreichischen Zementfabrikanten, Wein, 1982, pp 79–91 K. Tuutti, Analysis of Pore Solution Squeezed Out of Cement and Mortar. Proc. lnternationales Kolloquium Chlorid korrosion, Wien, 1983, Forschungsinstitut des Vereins der Oesterreichischen Zementfabrikanten, Wein, 1982, pp 79–91
41.
go back to reference J.B. Vrable and B.E. Wilde, Electrical Potential Requirements for Cathodic Protection of Steel in Simulated Concrete Environments, Corrosion, 1980, 36(1), p 18–23 J.B. Vrable and B.E. Wilde, Electrical Potential Requirements for Cathodic Protection of Steel in Simulated Concrete Environments, Corrosion, 1980, 36(1), p 18–23
Metadata
Title
Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack
Authors
Nedal Mohamed
Mohamed Boulfiza
Richard Evitts
Publication date
01-03-2013
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2013
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0314-0

Other articles of this Issue 3/2013

Journal of Materials Engineering and Performance 3/2013 Go to the issue

Premium Partners