Skip to main content
Top

2020 | OriginalPaper | Chapter

Coupled Electro-mechanical Behavior of Microtubules

Authors : Sundeep Singh, Roderick Melnik

Published in: Bioinformatics and Biomedical Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this contribution, the coupled electro-mechanical behavior of the microtubules has been systematically investigated utilizing a continuum-based finite element framework. A three-dimensional computational model of a microtubule has been developed for predicting the electro-elastic response of the microtubule subjected to external forces. The effects of the magnitude and direction of the applied forces on the mechanics of microtubule have been evaluated. In addition, the effects of variation of microtubule lengths on the electro-elastic response subjected to external forces have also been quantified. The results of numerical simulation suggest that the electro-elastic response of microtubule is significantly dependent on both the magnitude and direction of the applied forces. It has been found that the application of shear force results in the attainment of higher displacement and electric potential as compared to the compressive force of the same magnitude. It has been further observed that the output potential is linearly proportional to the predicted displacement and the electric potential within the microtubule. The increase in the length of microtubule significantly enhances the predicted piezoelectric potential under the application of different forces considered in the present study. It is expected that the reported findings would be useful in different avenues of biomedical engineering, such as biocompatible nano-biosensors for health monitoring, drug delivery, noninvasive diagnosis and treatments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, S., Wang, C., Nithiarasu, P.: Simulations on an undamped electromechanical vibration of microtubules in cytosol. Appl. Phys. Lett. 114(25), 253702 (2019)CrossRef Li, S., Wang, C., Nithiarasu, P.: Simulations on an undamped electromechanical vibration of microtubules in cytosol. Appl. Phys. Lett. 114(25), 253702 (2019)CrossRef
2.
go back to reference Kučera, O., Havelka, D., Cifra, M.: Vibrations of microtubules: physics that has not met biology yet. Wave Motion 72, 13–22 (2017)CrossRef Kučera, O., Havelka, D., Cifra, M.: Vibrations of microtubules: physics that has not met biology yet. Wave Motion 72, 13–22 (2017)CrossRef
3.
go back to reference Melnik, R.V.N., Wei, X., Moreno-Hagelsieb, G.: Nonlinear dynamics of cell cycles with stochastic mathematical models. J. Biol. Syst. 17(3), 425–460 (2009)CrossRef Melnik, R.V.N., Wei, X., Moreno-Hagelsieb, G.: Nonlinear dynamics of cell cycles with stochastic mathematical models. J. Biol. Syst. 17(3), 425–460 (2009)CrossRef
4.
go back to reference Havelka, D., Deriu, M.A., Cifra, M., Kučera, O.: Deformation pattern in vibrating microtubule: structural mechanics study based on an atomistic approach. Sci. Rep. 7(1), 4227 (2017)PubMedPubMedCentralCrossRef Havelka, D., Deriu, M.A., Cifra, M., Kučera, O.: Deformation pattern in vibrating microtubule: structural mechanics study based on an atomistic approach. Sci. Rep. 7(1), 4227 (2017)PubMedPubMedCentralCrossRef
5.
go back to reference Li, S., Wang, C., Nithiarasu, P.: Three-dimensional transverse vibration of microtubules. J. Appl. Phys. 121(23), 234301 (2017)CrossRef Li, S., Wang, C., Nithiarasu, P.: Three-dimensional transverse vibration of microtubules. J. Appl. Phys. 121(23), 234301 (2017)CrossRef
6.
go back to reference Tuszyński, J.A., Luchko, T., Portet, S., Dixon, J.M.: Anisotropic elastic properties of microtubules. Eur. Phys. J. E 17(1), 29–35 (2005)PubMedCrossRef Tuszyński, J.A., Luchko, T., Portet, S., Dixon, J.M.: Anisotropic elastic properties of microtubules. Eur. Phys. J. E 17(1), 29–35 (2005)PubMedCrossRef
7.
go back to reference Jiang, H., Jiang, L., Posner, J.D., Vogt, B.D.: Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction. Comput. Mech. 42(4), 607–618 (2008)CrossRef Jiang, H., Jiang, L., Posner, J.D., Vogt, B.D.: Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction. Comput. Mech. 42(4), 607–618 (2008)CrossRef
8.
go back to reference Liew, K.M., Xiang, P., Sun, Y.: A continuum mechanics framework and a constitutive model for predicting the orthotropic elastic properties of microtubules. Compos. Struct. 93(7), 1809–1818 (2011)CrossRef Liew, K.M., Xiang, P., Sun, Y.: A continuum mechanics framework and a constitutive model for predicting the orthotropic elastic properties of microtubules. Compos. Struct. 93(7), 1809–1818 (2011)CrossRef
9.
go back to reference Xiang, P., Liew, K.M.: Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model. Comput. Methods Appl. Mech. Eng. 223, 123–132 (2012)CrossRef Xiang, P., Liew, K.M.: Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model. Comput. Methods Appl. Mech. Eng. 223, 123–132 (2012)CrossRef
10.
go back to reference Liew, K.M., Xiang, P., Zhang, L.W.: Mechanical properties and characteristics of microtubules: a review. Compos. Struct. 123, 98–108 (2015)CrossRef Liew, K.M., Xiang, P., Zhang, L.W.: Mechanical properties and characteristics of microtubules: a review. Compos. Struct. 123, 98–108 (2015)CrossRef
11.
go back to reference Marracino, P., et al.: Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci. Rep. 9(1), 1–14 (2019)CrossRef Marracino, P., et al.: Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci. Rep. 9(1), 1–14 (2019)CrossRef
12.
go back to reference Civalek, Ö., Demir, C.: A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016) Civalek, Ö., Demir, C.: A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016)
13.
go back to reference Tuszynski, J.A., Kurzynski, M.: Introduction to Molecular Biophysics. CRC Press LLC, Boca Raton (2003)CrossRef Tuszynski, J.A., Kurzynski, M.: Introduction to Molecular Biophysics. CRC Press LLC, Boca Raton (2003)CrossRef
14.
go back to reference Chae, I., Jeong, C.K., Ounaies, Z., Kim, S.H.: Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio Mater. 1(4), 936–953 (2018)CrossRef Chae, I., Jeong, C.K., Ounaies, Z., Kim, S.H.: Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio Mater. 1(4), 936–953 (2018)CrossRef
15.
go back to reference Thackston, K.A., Deheyn, D.D., Sievenpiper, D.F.: Simulation of electric fields generated from microtubule vibrations. Phys. Rev. E 100(2), 022410 (2019)PubMedCrossRef Thackston, K.A., Deheyn, D.D., Sievenpiper, D.F.: Simulation of electric fields generated from microtubule vibrations. Phys. Rev. E 100(2), 022410 (2019)PubMedCrossRef
16.
go back to reference Katti, D.R., Katti, K.S.: Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: a 3D finite element modeling study. J. Mech. Behav. Biomed. Mater. 76, 125–134 (2017)PubMedCrossRef Katti, D.R., Katti, K.S.: Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: a 3D finite element modeling study. J. Mech. Behav. Biomed. Mater. 76, 125–134 (2017)PubMedCrossRef
17.
go back to reference Singh, S., Krishnaswamy, J.A., Melnik, R.: Biological cells and coupled electro-mechanical effects: a new model with nonlocal contributions (submitted) Singh, S., Krishnaswamy, J.A., Melnik, R.: Biological cells and coupled electro-mechanical effects: a new model with nonlocal contributions (submitted)
18.
go back to reference Denning, D., et al.: Piezoelectric tensor of collagen fibrils determined at the nanoscale. ACS Biomate. Sci. Eng. 3(6), 929–935 (2017)CrossRef Denning, D., et al.: Piezoelectric tensor of collagen fibrils determined at the nanoscale. ACS Biomate. Sci. Eng. 3(6), 929–935 (2017)CrossRef
19.
go back to reference Hao, H., Jenkins, K., Huang, X., Xu, Y., Huang, J., Yang, R.: Piezoelectric potential in single-crystalline ZnO nanohelices based on finite element analysis. Nanomaterials 7(12), 430 (2017)PubMedCentralCrossRef Hao, H., Jenkins, K., Huang, X., Xu, Y., Huang, J., Yang, R.: Piezoelectric potential in single-crystalline ZnO nanohelices based on finite element analysis. Nanomaterials 7(12), 430 (2017)PubMedCentralCrossRef
20.
go back to reference Cardoso, J., Oliveira, F., Proenca, M., Ventura, J.: The influence of shape on the output potential of ZnO nanostructures: sensitivity to parallel versus perpendicular forces. Nanomaterials 8(5), 354 (2018)PubMedCentralCrossRef Cardoso, J., Oliveira, F., Proenca, M., Ventura, J.: The influence of shape on the output potential of ZnO nanostructures: sensitivity to parallel versus perpendicular forces. Nanomaterials 8(5), 354 (2018)PubMedCentralCrossRef
21.
go back to reference Krishnaswamy, J.A., Buroni, F.C., Garcia-Sanchez, F., Melnik, R., Rodriguez-Tembleque, L., Saez, A.: Lead-free piezocomposites with CNT-modified matrices: accounting for agglomerations and molecular defects. Compos. Struct. 224, 111033 (2019)CrossRef Krishnaswamy, J.A., Buroni, F.C., Garcia-Sanchez, F., Melnik, R., Rodriguez-Tembleque, L., Saez, A.: Lead-free piezocomposites with CNT-modified matrices: accounting for agglomerations and molecular defects. Compos. Struct. 224, 111033 (2019)CrossRef
22.
go back to reference Krishnaswamy, J.A., Buroni, F.C., Garcia-Sanchez, F., Melnik, R., Rodriguez-Tembleque, L., Saez, A.: Improving the performance of lead-free piezoelectric composites by using polycrystalline inclusions and tuning the dielectric matrix environment. Smart Mater. Struct. 28, 075032 (2019)CrossRef Krishnaswamy, J.A., Buroni, F.C., Garcia-Sanchez, F., Melnik, R., Rodriguez-Tembleque, L., Saez, A.: Improving the performance of lead-free piezoelectric composites by using polycrystalline inclusions and tuning the dielectric matrix environment. Smart Mater. Struct. 28, 075032 (2019)CrossRef
24.
go back to reference Adnan, A., Qidwai, S., Bagchi, A.: On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules. J. Mech. Behav. Biomed. Mater. 86, 375–389 (2018)PubMedCrossRef Adnan, A., Qidwai, S., Bagchi, A.: On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules. J. Mech. Behav. Biomed. Mater. 86, 375–389 (2018)PubMedCrossRef
25.
go back to reference Xiang, P., Zhang, L.W., Liew, K.M.: Meshfree simulation of temperature effects on the mechanical behaviors of microtubules. Eng. Anal. Boundary Elem. 69, 104–118 (2016)CrossRef Xiang, P., Zhang, L.W., Liew, K.M.: Meshfree simulation of temperature effects on the mechanical behaviors of microtubules. Eng. Anal. Boundary Elem. 69, 104–118 (2016)CrossRef
Metadata
Title
Coupled Electro-mechanical Behavior of Microtubules
Authors
Sundeep Singh
Roderick Melnik
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-45385-5_7

Premium Partner