Skip to main content
Top

06-01-2021

COV19-CNNet and COV19-ResNet: Diagnostic Inference Engines for Early Detection of COVID-19

Authors: Ayturk Keles, Mustafa Berk Keles, Ali Keles

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chest CT is used in the COVID-19 diagnosis process as a significant complement to the reverse transcription polymerase chain reaction (RT–PCR) technique. However, it has several drawbacks, including long disinfection and ventilation times, excessive radiation effects, and high costs. While X-ray radiography is more useful for detecting COVID-19, it is insensitive to the early stages of the disease. We have developed inference engines that will turn X-ray machines into powerful diagnostic tools by using deep learning technology to detect COVID-19. We named these engines COV19-CNNet and COV19-ResNet. The former is based on convolutional neural network architecture; the latter is on residual neural network (ResNet) architecture. This research is a retrospective study. The database consists of 210 COVID-19, 350 viral pneumonia, and 350 normal (healthy) chest X-ray (CXR) images that were created using two different data sources. This study was focused on the problem of multi-class classification (COVID-19, viral pneumonia, and normal), which is a rather difficult task for the diagnosis of COVID-19. The classification accuracy levels for COV19-ResNet and COV19-CNNet were 97.61% and 94.28%, respectively. The inference engines were developed from scratch using new and special deep neural networks without pre-trained models, unlike other studies in the field. These powerful diagnostic engines allow for the early detection of COVID-19 as well as distinguish it from viral pneumonia with similar radiological appearances. Thus, they can help in fast recovery at the early stages, prevent the COVID-19 outbreak from spreading, and contribute to reducing pressure on health-care systems worldwide.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;6736(20):1–10. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;6736(20):1–10.
2.
go back to reference Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2.CrossRef Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2.CrossRef
4.
go back to reference MacMahon H, Naidich DP, Goo JM, Lee KS, Leung NC, Mayo JR, et al. A guideline for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society. Radiology. 2017;284(1):228–43.CrossRef MacMahon H, Naidich DP, Goo JM, Lee KS, Leung NC, Mayo JR, et al. A guideline for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society. Radiology. 2017;284(1):228–43.CrossRef
5.
go back to reference Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020;295(3):715–72.CrossRef Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020;295(3):715–72.CrossRef
9.
go back to reference Mettler FA, Hunda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.CrossRef Mettler FA, Hunda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.CrossRef
10.
go back to reference Riordon J, Sovilj D, Sanner S, Sinton D, Young EWK. Deep learning with microfluidics for biotechnology. Trends Biotechnol. 2019;37(3):310–24.CrossRef Riordon J, Sovilj D, Sanner S, Sinton D, Young EWK. Deep learning with microfluidics for biotechnology. Trends Biotechnol. 2019;37(3):310–24.CrossRef
11.
go back to reference Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik. 2019;29(2):102–27.CrossRef Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik. 2019;29(2):102–27.CrossRef
12.
go back to reference Maier A, Syben C, Lasser T, Riess CA. A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische Physik. 2019;29(2):86–101.CrossRef Maier A, Syben C, Lasser T, Riess CA. A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische Physik. 2019;29(2):86–101.CrossRef
16.
go back to reference Loey M, Smarandache F, Khalifa MNE. Within the lack of COVID-19 benchmark dataset: a novel GAN with deep transfer learning for corona-virus detection in CXR images. Symmetry. 2020;12(4):651–69.CrossRef Loey M, Smarandache F, Khalifa MNE. Within the lack of COVID-19 benchmark dataset: a novel GAN with deep transfer learning for corona-virus detection in CXR images. Symmetry. 2020;12(4):651–69.CrossRef
23.
go back to reference Goutte C, Gaussier E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada DE, Fernández-Luna JM, editors. Advances in information retrieval. ECIR 2005. Lecture Notes in Computer Science (3408). Heidelberg: Springer, Berlin. pp. 345–359. Goutte C, Gaussier E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada DE, Fernández-Luna JM, editors. Advances in information retrieval. ECIR 2005. Lecture Notes in Computer Science (3408). Heidelberg: Springer, Berlin. pp. 345–359.
24.
go back to reference Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation, In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, Springer, Cham; 2015;9351; 234-241. https://doi.org/10.1007/978-3-319-24574-4_28 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation, In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, Springer, Cham; 2015;9351; 234-241. https://​doi.​org/​10.​1007/​978-3-319-24574-4_​28
26.
go back to reference Ragab DA, Sharkas SM, Ren J. Breast cancer detection using deep convolutional neural networks and support vector machines. Peer J. 2019;7:e6201.CrossRef Ragab DA, Sharkas SM, Ren J. Breast cancer detection using deep convolutional neural networks and support vector machines. Peer J. 2019;7:e6201.CrossRef
27.
go back to reference Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35(5):1240–51.CrossRef Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35(5):1240–51.CrossRef
28.
go back to reference Talo M, Baloglu UB, Yıldırım O, Acharya UR. Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn Syst Res. 2019;1(54):176–188.CrossRef Talo M, Baloglu UB, Yıldırım O, Acharya UR. Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn Syst Res. 2019;1(54):176–188.CrossRef
29.
go back to reference Ayan E, Ünver HM. Data augmentation importance for classification of skin lesions via deep learning. Paper presented at: Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) 2018;1–4. Ayan E, Ünver HM. Data augmentation importance for classification of skin lesions via deep learning. Paper presented at: Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) 2018;1–4.
30.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.CrossRef Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.CrossRef
31.
go back to reference Bernheim A, Huang XM, Yang Y, Fayad ZA, Diao NK, Li BXKS, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3):685–91.CrossRef Bernheim A, Huang XM, Yang Y, Fayad ZA, Diao NK, Li BXKS, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3):685–91.CrossRef
32.
go back to reference Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology. 2020;295(1):16–7.CrossRef Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology. 2020;295(1):16–7.CrossRef
33.
go back to reference Thomas C, Mulholland EK, Carlin JB, Ostensen H, Amin R, Campo M, et al. Standardized interpretation of pediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies. Bull World Health Organ. 2005;83(5):353–9. Thomas C, Mulholland EK, Carlin JB, Ostensen H, Amin R, Campo M, et al. Standardized interpretation of pediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies. Bull World Health Organ. 2005;83(5):353–9.
35.
go back to reference Ng MY, Lee EY, Yang J, Yang F, Li X, Wang H, et al. Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol Cardiothorac Imaging. 2020;2:e200034.CrossRef Ng MY, Lee EY, Yang J, Yang F, Li X, Wang H, et al. Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol Cardiothorac Imaging. 2020;2:e200034.CrossRef
Metadata
Title
COV19-CNNet and COV19-ResNet: Diagnostic Inference Engines for Early Detection of COVID-19
Authors
Ayturk Keles
Mustafa Berk Keles
Ali Keles
Publication date
06-01-2021
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-020-09795-5

Premium Partner