Skip to main content
Top
Published in: Metallurgist 7-8/2023

20-12-2023

Critical Factors for Selecting a Carbon Dioxide Capture System in the Industry

Authors: A. A. Zharmenov, F. A. Berdikulova, A. G. Khamidulla, J. Hein

Published in: Metallurgist | Issue 7-8/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The global warming and climate change caused by the continuing rise in carbon dioxide (CO2) emissions have attracted the attention of the public, scientists, and governments in recent years. An effective approach to limit the impact of such emissions is the implementation of advanced carbon capture and storage systems. This paper provides an overview of technologies and recent advances in carbon capture and utilization. The main methods include postcombustion, precombustion, and oxyfuel-combustion, adsorption, and membrane capture. In addition, various problems associated with the storage, transportation, and utilization of CO2 are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
6.
go back to reference M. E. Hoeven, Technology Roadmap: Carbon Capture and Storage, IEA Publications, Paris, 9, 1–63 (2013). M. E. Hoeven, Technology Roadmap: Carbon Capture and Storage, IEA Publications, Paris, 9, 1–63 (2013).
8.
go back to reference D. Leeson, N. Mac Dowell, N. Shah, C. Petit, and P. S. Fennell, “A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources,” Int. J. Greenhouse Gas Control, 61, 71–84 (2017); https://doi.org/10.1016/j.ijggc.2017.03.020. D. Leeson, N. Mac Dowell, N. Shah, C. Petit, and P. S. Fennell, “A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources,” Int. J. Greenhouse Gas Control, 61, 71–84 (2017); https://​doi.​org/​10.​1016/​j.​ijggc.​2017.​03.​020.
11.
go back to reference M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, “50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities,” Macromolecules, 50, 7809–7843 (2017); https://doi.org/10.1021/acs.macromol.7b01718. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, “50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities,” Macromolecules, 50, 7809–7843 (2017); https://​doi.​org/​10.​1021/​acs.​macromol.​7b01718.
20.
go back to reference A. Mukhtar, S. Saqib, N. B. Mellon, M. Babar, S. Rafiq, S. Ullah, M. A. Bustam, A. G. Al-Sehemi, N. Muhammad, and M. Chawla, “CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: a review,” J. Nat. Gas Sci. Eng., 77 (2020); https://doi.org/10.1016/j.jngse.2020.103203. A. Mukhtar, S. Saqib, N. B. Mellon, M. Babar, S. Rafiq, S. Ullah, M. A. Bustam, A. G. Al-Sehemi, N. Muhammad, and M. Chawla, “CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: a review,” J. Nat. Gas Sci. Eng., 77 (2020); https://​doi.​org/​10.​1016/​j.​jngse.​2020.​103203.
25.
go back to reference S. R. Edward, M. Hari, M. Aaron, P. Versteeg, and J. Kitchin, “The outlook for improved carbon capture technology,” Prog. Energy Combust. Sci., 38, 630–671 (2012).CrossRef S. R. Edward, M. Hari, M. Aaron, P. Versteeg, and J. Kitchin, “The outlook for improved carbon capture technology,” Prog. Energy Combust. Sci., 38, 630–671 (2012).CrossRef
26.
go back to reference D. Wappel, G. Gronald, R. Kalb, and J. Draxler, “Ionic liquids for post-combustion CO2 absorption,” Int. J. Greenhouse Gas Control, 4(3), 486–494 (2010).CrossRef D. Wappel, G. Gronald, R. Kalb, and J. Draxler, “Ionic liquids for post-combustion CO2 absorption,” Int. J. Greenhouse Gas Control, 4(3), 486–494 (2010).CrossRef
27.
go back to reference D. J. Fauth, M. L. Gray, H. W. Pennline, H. M. Krutka, S. Sjostrom, and A. M. Ault, “Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture,” Energy & Fuels, 26(4), 2483–2496 (2012).CrossRef D. J. Fauth, M. L. Gray, H. W. Pennline, H. M. Krutka, S. Sjostrom, and A. M. Ault, “Investigation of porous silica supported mixed-amine sorbents for post-combustion CO2 capture,” Energy & Fuels, 26(4), 2483–2496 (2012).CrossRef
28.
go back to reference C. A. Scholes, M. T. Ho, D. E. Wiley, G. W. Stevens, and S. E. Kentish, “Cost competitive membrane-cryogenic post combustion carbon capture,” Int. J. Greenhouse Gas Control, 17, 341–348 (2013).CrossRef C. A. Scholes, M. T. Ho, D. E. Wiley, G. W. Stevens, and S. E. Kentish, “Cost competitive membrane-cryogenic post combustion carbon capture,” Int. J. Greenhouse Gas Control, 17, 341–348 (2013).CrossRef
29.
go back to reference A. Jayakumar, A. Gomez, and N. Mahinpey, “Post-combustion CO2 capture using solid K2CO3: discovering the carbonation reaction mechanism,” Appl. Energy, 179, 531–543 (2016).CrossRef A. Jayakumar, A. Gomez, and N. Mahinpey, “Post-combustion CO2 capture using solid K2CO3: discovering the carbonation reaction mechanism,” Appl. Energy, 179, 531–543 (2016).CrossRef
30.
go back to reference M. Wang, L. Yao, J. Wang, Z. Zhang, W. Qiao, D. Long, and L. Ling, “Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture,” Appl. Energy, 168, 282–290 (2016).CrossRef M. Wang, L. Yao, J. Wang, Z. Zhang, W. Qiao, D. Long, and L. Ling, “Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture,” Appl. Energy, 168, 282–290 (2016).CrossRef
31.
go back to reference C. Nwaoha, T. Supap, R. Idem, C. Saiwan, P. Tontiwachwuthikul, M. J. Al-Marri, and A. Benamor, “Advancement and new perspectives of using formulated reactive amine blends for post combustion carbon dioxide (CO2) capture technologies,” Petroleum, 3(1), 10–36 (2017).CrossRef C. Nwaoha, T. Supap, R. Idem, C. Saiwan, P. Tontiwachwuthikul, M. J. Al-Marri, and A. Benamor, “Advancement and new perspectives of using formulated reactive amine blends for post combustion carbon dioxide (CO2) capture technologies,” Petroleum, 3(1), 10–36 (2017).CrossRef
32.
go back to reference M. Vellini and M. Gambini, “CO2 capture in advanced power plants fed by coal and equipped with OTM,” Int. J. Greenhouse Gas Control, 36, 144–152 (2015).CrossRef M. Vellini and M. Gambini, “CO2 capture in advanced power plants fed by coal and equipped with OTM,” Int. J. Greenhouse Gas Control, 36, 144–152 (2015).CrossRef
33.
go back to reference J. Elfving, C. Bajamundi, and J. Kauppinen, “Characterization and performance of direct air capture sorbent,” Energy Procedia, 114, 6087–6101 (2017).CrossRef J. Elfving, C. Bajamundi, and J. Kauppinen, “Characterization and performance of direct air capture sorbent,” Energy Procedia, 114, 6087–6101 (2017).CrossRef
34.
go back to reference L. Jiang, R. Q. Wang, A. Gonzalez-Diaz, A. Smallbone, R. O. Lamidi, and A. P. Roskilly, “Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery,” Appl. Therm. Eng., 169, 1–10 (2020).CrossRef L. Jiang, R. Q. Wang, A. Gonzalez-Diaz, A. Smallbone, R. O. Lamidi, and A. P. Roskilly, “Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery,” Appl. Therm. Eng., 169, 1–10 (2020).CrossRef
35.
go back to reference L. Riboldi and O. Bolland, “Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials,” Energy Procedia, 14, 2390–2400 (2017).CrossRef L. Riboldi and O. Bolland, “Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials,” Energy Procedia, 14, 2390–2400 (2017).CrossRef
36.
go back to reference A. Mukherjee, J. A. Okolie, A. Abdelrasoul, C. Niu, and A. K. Dalai, “Review of post-combustion carbon dioxide capture technologies using activated carbon,” J. Environ. Sci., 83, 46–63 (2019).CrossRef A. Mukherjee, J. A. Okolie, A. Abdelrasoul, C. Niu, and A. K. Dalai, “Review of post-combustion carbon dioxide capture technologies using activated carbon,” J. Environ. Sci., 83, 46–63 (2019).CrossRef
37.
go back to reference R. Ben-Mansour, M. A. Habib, O. E. Bamidele, M. Basha, N. A. A. Qasem, and A. Peedikakkal, “Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations — a review,” Appl. Energy, 161, 225–255 (2016).CrossRef R. Ben-Mansour, M. A. Habib, O. E. Bamidele, M. Basha, N. A. A. Qasem, and A. Peedikakkal, “Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations — a review,” Appl. Energy, 161, 225–255 (2016).CrossRef
38.
go back to reference A. A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications — a review,” Energy, 35(6), 2610–2628 (2010).CrossRef A. A. Olajire, “CO2 capture and separation technologies for end-of-pipe applications — a review,” Energy, 35(6), 2610–2628 (2010).CrossRef
39.
go back to reference A. Mukherjee, J. A. Okolie, A. Abdelrasoul, C. Niu, and A. K. Dalai, “Review of post-combustion carbon dioxide capture technologies using activated carbon,” J. Environ. Sci., 83, 46–63 (2019).CrossRef A. Mukherjee, J. A. Okolie, A. Abdelrasoul, C. Niu, and A. K. Dalai, “Review of post-combustion carbon dioxide capture technologies using activated carbon,” J. Environ. Sci., 83, 46–63 (2019).CrossRef
40.
go back to reference M. D. Hornbostel, J. E. Bao, G. Krishnan, A. Nagar, I. Jayaweera, and T. Kobayashi, “Characteristics of an advanced carbon sorbent for CO2 capture,” Carbon, 56, 77–85 (2013).CrossRef M. D. Hornbostel, J. E. Bao, G. Krishnan, A. Nagar, I. Jayaweera, and T. Kobayashi, “Characteristics of an advanced carbon sorbent for CO2 capture,” Carbon, 56, 77–85 (2013).CrossRef
45.
go back to reference A. H. Alami, A. Abu Hawili, M. Tawalbeh, R. Hasan, L. Al Mahmoud, S. Chibib, A. Mahmood, K. Aokal, and P. Rattanapanya, “Materials and logistics for carbon dioxide capture, storage and utilization,” Sci. Total Environ., 717, 137–221 (2020). A. H. Alami, A. Abu Hawili, M. Tawalbeh, R. Hasan, L. Al Mahmoud, S. Chibib, A. Mahmood, K. Aokal, and P. Rattanapanya, “Materials and logistics for carbon dioxide capture, storage and utilization,” Sci. Total Environ., 717, 137–221 (2020).
46.
go back to reference Z. Kang, Y. Peng, Z. Hu, Y. Qian, C. Chi, L. Y. Yeo, L. Tee, and D. J. Zhao, “CO2 capture: a relationship study of filler morphology versus membrane performance,” Mater. Chem. A, 3(41), 20801–20810 (2015).CrossRef Z. Kang, Y. Peng, Z. Hu, Y. Qian, C. Chi, L. Y. Yeo, L. Tee, and D. J. Zhao, “CO2 capture: a relationship study of filler morphology versus membrane performance,” Mater. Chem. A, 3(41), 20801–20810 (2015).CrossRef
48.
go back to reference M. Osman, A. Zaabout, S. Cloete, and S. Amini, “Experimental demonstration of pressurized chemical looping combustion in an internally circulating reactor for power production with integrated CO2 capture,” Chem. Eng. J., 401, 125–974 (2020).CrossRef M. Osman, A. Zaabout, S. Cloete, and S. Amini, “Experimental demonstration of pressurized chemical looping combustion in an internally circulating reactor for power production with integrated CO2 capture,” Chem. Eng. J., 401, 125–974 (2020).CrossRef
53.
go back to reference T. N. G. Borhani, V. Akbari, M. Afkhamipour, M. K. A. Hamid, and Z. A. Manan, “Comparison of equilibrium and nonequilibrium models of a tray column for post-combustion CO2 capture using DEA-promoted potassium carbonate solution,” Chem. Eng. Sci., 122, 291–298 (2015).CrossRef T. N. G. Borhani, V. Akbari, M. Afkhamipour, M. K. A. Hamid, and Z. A. Manan, “Comparison of equilibrium and nonequilibrium models of a tray column for post-combustion CO2 capture using DEA-promoted potassium carbonate solution,” Chem. Eng. Sci., 122, 291–298 (2015).CrossRef
Metadata
Title
Critical Factors for Selecting a Carbon Dioxide Capture System in the Industry
Authors
A. A. Zharmenov
F. A. Berdikulova
A. G. Khamidulla
J. Hein
Publication date
20-12-2023
Publisher
Springer US
Published in
Metallurgist / Issue 7-8/2023
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-023-01614-0

Other articles of this Issue 7-8/2023

Metallurgist 7-8/2023 Go to the issue

Premium Partners