Skip to main content
Top
Published in: Geotechnical and Geological Engineering 2/2015

01-04-2015 | Original paper

Critical Review of Thermal Conductivity Models for Unsaturated Soils

Authors: Yi Dong, John S. McCartney, Ning Lu

Published in: Geotechnical and Geological Engineering | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although it is well established that heat conduction in unsaturated soil depends on liquid saturation, there are several models available to consider the changes in thermal conductivity during drying and wetting. The key factors affecting thermal conductivity of unsaturated soil are evaluated through a critical examination of these different models and their development. Depending on the principles and assumptions employed, these models are categorized into three groups: mixing models involving series/parallel elements; empirical models where thermal conductivity values at dry and saturated states are used; and mathematical models based on phase volume fractions. Experimental data for different soils are used to assess the quality of prediction for these models. It is found that all the existing models do not realistically account for pore structure or interface properties, and thus are not capable of properly predicting thermal conductivity as a function of liquid saturation. A conceptual model based on soil–water retention mechanisms, is proposed to overcome the pitfalls of the existing models and can be used to establish quantitative thermal conductivity models for variably saturated soils in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aduda BO (1996) Effective thermal conductivity of loose particulate systems. J Mater Sci 31:6441–6448CrossRef Aduda BO (1996) Effective thermal conductivity of loose particulate systems. J Mater Sci 31:6441–6448CrossRef
go back to reference Bejan A, Kraus AD (2003) Heat transfer handbook. Wiley, New York Bejan A, Kraus AD (2003) Heat transfer handbook. Wiley, New York
go back to reference Brandl H (2006) Energy foundations and other thermo-active ground structures. Geotechnique 56:81–122CrossRef Brandl H (2006) Energy foundations and other thermo-active ground structures. Geotechnique 56:81–122CrossRef
go back to reference Brandon TL, Mitchell JK (1989) Factors influencing thermal resistivity of sands. J Geotech Eng 115(12):1683–1698CrossRef Brandon TL, Mitchell JK (1989) Factors influencing thermal resistivity of sands. J Geotech Eng 115(12):1683–1698CrossRef
go back to reference Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford, London Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford, London
go back to reference Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Transf 48:2150–2158CrossRef Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Transf 48:2150–2158CrossRef
go back to reference Chen S (2008) Thermal conductivity of sands. Heat Mass Transf 44:1241–1246CrossRef Chen S (2008) Thermal conductivity of sands. Heat Mass Transf 44:1241–1246CrossRef
go back to reference Cortes DD, Martin AI, Yun TS, Francisca FM, Santamarina JC, Ruppel C (2009) Thermal conductivity of hydrate-bearing sediments. J Geophys Res 114:B11103CrossRef Cortes DD, Martin AI, Yun TS, Francisca FM, Santamarina JC, Ruppel C (2009) Thermal conductivity of hydrate-bearing sediments. J Geophys Res 114:B11103CrossRef
go back to reference Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42:443–458CrossRef Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42:443–458CrossRef
go back to reference De Vries DA (1952) The thermal conductivity of soil. Mededelingen van de Landbouwhogeschool te Wageningen 52 (1):1–73 De Vries DA (1952) The thermal conductivity of soil. Mededelingen van de Landbouwhogeschool te Wageningen 52 (1):1–73
go back to reference De Vries DA (1963) Thermal properties of soils. In: Van Wijk WR (ed) Physics of plant environment. Wiley, New York, pp 210–235 De Vries DA (1963) Thermal properties of soils. In: Van Wijk WR (ed) Physics of plant environment. Wiley, New York, pp 210–235
go back to reference Ebigbo A (2005) Thermal effects of carbon dioxide sequestration in the subsurface, Master’s thesis, Institut für Wasserbau, Universität Stuttgart Ebigbo A (2005) Thermal effects of carbon dioxide sequestration in the subsurface, Master’s thesis, Institut für Wasserbau, Universität Stuttgart
go back to reference Esch DC (2004) Thermal analysis, construction, and monitoring methods for frozen ground. TCCRE Monographs. ASCE. Reston, VA, p 498 Esch DC (2004) Thermal analysis, construction, and monitoring methods for frozen ground. TCCRE Monographs. ASCE. Reston, VA, p 498
go back to reference Farouki OT (1981) Thermal properties of soils. Cold Regions Science and Engineering, CRREL Monograph 81–1, 136 Farouki OT (1981) Thermal properties of soils. Cold Regions Science and Engineering, CRREL Monograph 81–1, 136
go back to reference Gangadhara Rao M, Singh DN (1999) A generalized relationship to estimate thermal resistivity of soils. Can Geotech J 36:767–773CrossRef Gangadhara Rao M, Singh DN (1999) A generalized relationship to estimate thermal resistivity of soils. Can Geotech J 36:767–773CrossRef
go back to reference Gens A, Sánchez M, Guimaraes LDN, Alonso EE, Lloret A, Olivella S, Villar MV, Huertas F (2009) A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation. Géotechnique 59:377–399CrossRef Gens A, Sánchez M, Guimaraes LDN, Alonso EE, Lloret A, Olivella S, Villar MV, Huertas F (2009) A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation. Géotechnique 59:377–399CrossRef
go back to reference Gori F, Corasaniti S (2002) Theoretical prediction of the soil thermal conductivity at moderately high temperatures. J Heat Transf Trans Asme 124(6):1001–1008CrossRef Gori F, Corasaniti S (2002) Theoretical prediction of the soil thermal conductivity at moderately high temperatures. J Heat Transf Trans Asme 124(6):1001–1008CrossRef
go back to reference Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131CrossRef Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131CrossRef
go back to reference Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140CrossRef Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140CrossRef
go back to reference Johansen O (1975) Thermal conductivity of soils. N.H. CRREL Draft English Translation 637. Ph.D. thesis, University of Trondheim, Trondheim, Norway. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover Johansen O (1975) Thermal conductivity of soils. N.H. CRREL Draft English Translation 637. Ph.D. thesis, University of Trondheim, Trondheim, Norway. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover
go back to reference Kersten MS (1949) Laboratory research for the determination of the thermal properties of soils. Technical Report 23. Research Laboratory Investigations, Engineering Experiment Station, University of Minnesota, Minneapolis, Minn Kersten MS (1949) Laboratory research for the determination of the thermal properties of soils. Technical Report 23. Research Laboratory Investigations, Engineering Experiment Station, University of Minnesota, Minneapolis, Minn
go back to reference Lambert MA, Fletcher LS (1997a) Thermal contact conductance of spherical rough metals. J Heat Transf Trans Asme 119(4):684–690CrossRef Lambert MA, Fletcher LS (1997a) Thermal contact conductance of spherical rough metals. J Heat Transf Trans Asme 119(4):684–690CrossRef
go back to reference Lambert MA, Fletcher LS (1997b) Review of models for thermal contact conductance of metals. J Thermophys Heat Transf 11:129–140CrossRef Lambert MA, Fletcher LS (1997b) Review of models for thermal contact conductance of metals. J Thermophys Heat Transf 11:129–140CrossRef
go back to reference Lehmann P, Stähli M, Papritz A, Gygi A, Flühler H (2003) A fractal approach to model soil structure and to calculate thermal conductivity of soils. Transp Porous Media 52:313–332CrossRef Lehmann P, Stähli M, Papritz A, Gygi A, Flühler H (2003) A fractal approach to model soil structure and to calculate thermal conductivity of soils. Transp Porous Media 52:313–332CrossRef
go back to reference Li D, Sun X, Khaleel M (2012) Comparison of different upscaling methods for predicting thermal conductivity of complex heterogeneous materials system: application on nuclear waste forms. Metall Mater Trans A 44(1):1–9 Li D, Sun X, Khaleel M (2012) Comparison of different upscaling methods for predicting thermal conductivity of complex heterogeneous materials system: application on nuclear waste forms. Metall Mater Trans A 44(1):1–9
go back to reference Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14CrossRef Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14CrossRef
go back to reference McGaw R (1969) Heat conduction in saturated granular materials. Highway Research Board Special Report McGaw R (1969) Heat conduction in saturated granular materials. Highway Research Board Special Report
go back to reference Mickley A (1951) The thermal conductivity of moist soil. Am Inst Electr Eng Trans 70:1789–1797CrossRef Mickley A (1951) The thermal conductivity of moist soil. Am Inst Electr Eng Trans 70:1789–1797CrossRef
go back to reference Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York
go back to reference Murashov VV, White M (2000) Thermal conductivity of crystalline particulate materials. J Mater Sci 35:649–653CrossRef Murashov VV, White M (2000) Thermal conductivity of crystalline particulate materials. J Mater Sci 35:649–653CrossRef
go back to reference Preene M, Powrie W (2009) Ground energy systems: from analysis to geotechnical design. Geotechnique 59:261–271CrossRef Preene M, Powrie W (2009) Ground energy systems: from analysis to geotechnical design. Geotechnique 59:261–271CrossRef
go back to reference Sahimi M, Tsotsis TT (1997) Transient diffusion and conduction in heterogeneous media: beyond the classical effective-medium approximation. Ind Eng Chem Res 36:3043–3052CrossRef Sahimi M, Tsotsis TT (1997) Transient diffusion and conduction in heterogeneous media: beyond the classical effective-medium approximation. Ind Eng Chem Res 36:3043–3052CrossRef
go back to reference Singh DN, Devid K (2000) Generalized relationships for estimating soil thermal resistivity. Exp Thermal Fluid Sci 22:133–143CrossRef Singh DN, Devid K (2000) Generalized relationships for estimating soil thermal resistivity. Exp Thermal Fluid Sci 22:133–143CrossRef
go back to reference Smits KM, Sakaki T, Limsuwat A, Illangasekare TH (2010) Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles. Vadose Zone J 9:172–180CrossRef Smits KM, Sakaki T, Limsuwat A, Illangasekare TH (2010) Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles. Vadose Zone J 9:172–180CrossRef
go back to reference Tarnawski VR, Leong WH, Gori F, Buchan GD, Sundberg J (2002) Interparticle contact heat transfer in soil systems at moderate temperatures. Int J Energy Res 26:1345–1358CrossRef Tarnawski VR, Leong WH, Gori F, Buchan GD, Sundberg J (2002) Interparticle contact heat transfer in soil systems at moderate temperatures. Int J Energy Res 26:1345–1358CrossRef
go back to reference Tarnawski VR, Momose T, Leong WH (2009) Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique 59:331–338CrossRef Tarnawski VR, Momose T, Leong WH (2009) Assessing the impact of quartz content on the prediction of soil thermal conductivity. Geotechnique 59:331–338CrossRef
go back to reference Vargas WL, McCarthy JJ (2001) Heat conduction in granular materials. AIChE J 47:1052–1059CrossRef Vargas WL, McCarthy JJ (2001) Heat conduction in granular materials. AIChE J 47:1052–1059CrossRef
go back to reference White DE (1973) Characteristics of geothermal resources. Geothermal Energy, Stanford University Press, Stanford, pp 69–94 White DE (1973) Characteristics of geothermal resources. Geothermal Energy, Stanford University Press, Stanford, pp 69–94
go back to reference Woodside W, Messmer JH (1961) Thermal conductivity of porous media. I. Unconsolidated sands. J Appl Phys 32:1688–1699CrossRef Woodside W, Messmer JH (1961) Thermal conductivity of porous media. I. Unconsolidated sands. J Appl Phys 32:1688–1699CrossRef
go back to reference Yun TS (2005) Mechanical and thermal study of hydrate bearing sediments, Ph.D. Georgia Institute of Technology, Atlanta Yun TS (2005) Mechanical and thermal study of hydrate bearing sediments, Ph.D. Georgia Institute of Technology, Atlanta
go back to reference Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granular Matter 10:197CrossRef Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granular Matter 10:197CrossRef
Metadata
Title
Critical Review of Thermal Conductivity Models for Unsaturated Soils
Authors
Yi Dong
John S. McCartney
Ning Lu
Publication date
01-04-2015
Publisher
Springer International Publishing
Published in
Geotechnical and Geological Engineering / Issue 2/2015
Print ISSN: 0960-3182
Electronic ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-015-9843-2

Other articles of this Issue 2/2015

Geotechnical and Geological Engineering 2/2015 Go to the issue