Skip to main content
Top
Published in: International Journal of Social Robotics 4/2022

29-11-2021

Crowd-Comfort Robot Navigation Among Dynamic Environment Based on Social-Stressed Deep Reinforcement Learning

Authors: Zhengxi Hu, Yingli Zhao, Sen Zhang, Lei Zhou, Jingtai Liu

Published in: International Journal of Social Robotics | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Robot navigation in a dynamic environment is a challenging task because not only the safety but also the comfort of surrounding pedestrians shall be necessarily considered. This paper proposes the concept of social stress based on tension space of robot and human, which is an important part of Human-Robot interaction. Especially, the proposed approach develops crowd-comfort navigation by combining social stress indexes with a deep reinforcement learning framework and the value network. A set of typical simulation experiments show that our method improves the comfort of surrounding pedestrians effectively during the process of robot navigation. In addition, the fine-tuned technology proposed in this paper has also been proven to be suitable for different scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ding H (2017) Theory and technology of tri-co robots. In: 2017 IEEE/SICE International Symposium on System Integration (SII). IEEE , pp. 4–4 Ding H (2017) Theory and technology of tri-co robots. In: 2017 IEEE/SICE International Symposium on System Integration (SII). IEEE , pp. 4–4
2.
go back to reference Ding H, Yang X, Zheng N, Li M, Lai Y, Wu H (2018) Tri-co robot: a Chinese robotic research initiative for enhanced robot interaction capabilities. Natl Sci Rev 5(6):799–801CrossRef Ding H, Yang X, Zheng N, Li M, Lai Y, Wu H (2018) Tri-co robot: a Chinese robotic research initiative for enhanced robot interaction capabilities. Natl Sci Rev 5(6):799–801CrossRef
3.
go back to reference Sato T, Oyama E, Matsuhira N (2008) Development of common platform technology for next-generation robots. INTECH Open Access Publisher, LondonCrossRef Sato T, Oyama E, Matsuhira N (2008) Development of common platform technology for next-generation robots. INTECH Open Access Publisher, LondonCrossRef
4.
go back to reference Dautenhahn K, Woods S, Kaouri C, Walters M.L, Koay K.L, Werry I (2005) What is a robot companion-friend, assistant or butler?. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1192–1197 Dautenhahn K, Woods S, Kaouri C, Walters M.L, Koay K.L, Werry I (2005) What is a robot companion-friend, assistant or butler?. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1192–1197
5.
go back to reference Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part i. IEEE Robot Autom Mag 13(2):99–110CrossRef Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part i. IEEE Robot Autom Mag 13(2):99–110CrossRef
6.
go back to reference Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (slam): part ii. IEEE Robot Autom Mag 13(3):108–117CrossRef Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (slam): part ii. IEEE Robot Autom Mag 13(3):108–117CrossRef
7.
go back to reference Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107CrossRef Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107CrossRef
8.
go back to reference LaValle SM (1998) Rapidly-exploring random trees: a new tool for path planning LaValle SM (1998) Rapidly-exploring random trees: a new tool for path planning
9.
go back to reference Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17(7):760–772CrossRef Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17(7):760–772CrossRef
10.
go back to reference Vanden Berg J, Lin M, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation. IEEE, pp. 1928–1935 Vanden Berg J, Lin M, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation. IEEE, pp. 1928–1935
11.
go back to reference Van DenBerg J, Guy SJ, Lin M, Manocha D (2011) Reciprocal n-body collision avoidance. Robotics research. Springer, New York, pp 3–19 Van DenBerg J, Guy SJ, Lin M, Manocha D (2011) Reciprocal n-body collision avoidance. Robotics research. Springer, New York, pp 3–19
12.
go back to reference Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33CrossRef Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33CrossRef
13.
go back to reference Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282CrossRef Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282CrossRef
14.
go back to reference Jiang Y-Q, Chen B-K, Wang B-H, Wong W-F, Cao B-Y (2017) Extended social force model with a dynamic navigation field for bidirectional pedestrian flow. Front Phys 12(5):124502CrossRef Jiang Y-Q, Chen B-K, Wang B-H, Wong W-F, Cao B-Y (2017) Extended social force model with a dynamic navigation field for bidirectional pedestrian flow. Front Phys 12(5):124502CrossRef
15.
go back to reference Robicquet A, Sadeghian A, Alahi A, Savarese S (2016) Learning social etiquette: Human trajectory understanding in crowded scenes. In: European Conference on Computer Vision. Springer, pp. 549–565 Robicquet A, Sadeghian A, Alahi A, Savarese S (2016) Learning social etiquette: Human trajectory understanding in crowded scenes. In: European Conference on Computer Vision. Springer, pp. 549–565
16.
go back to reference Trautman P, Krause A (2010) Unfreezing the robot: Navigation in dense, interacting crowds. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 797–803 Trautman P, Krause A (2010) Unfreezing the robot: Navigation in dense, interacting crowds. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 797–803
17.
go back to reference Trautman P, Ma J, Murray RM, Krause A (2015) Robot navigation in dense human crowds: statistical models and experimental studies of human-robot cooperation. Int J Robot Res 34(3):335–356CrossRef Trautman P, Ma J, Murray RM, Krause A (2015) Robot navigation in dense human crowds: statistical models and experimental studies of human-robot cooperation. Int J Robot Res 34(3):335–356CrossRef
18.
go back to reference Kim B, Pineau J (2016) Socially adaptive path planning in human environments using inverse reinforcement learning. Int J Soc Robot 8(1):51–66CrossRef Kim B, Pineau J (2016) Socially adaptive path planning in human environments using inverse reinforcement learning. Int J Soc Robot 8(1):51–66CrossRef
19.
go back to reference Kretzschmar H, Spies M, Sprunk C, Burgard W (2016) Socially compliant mobile robot navigation via inverse reinforcement learning. Int J Robot Res 35(11):1289–1307CrossRef Kretzschmar H, Spies M, Sprunk C, Burgard W (2016) Socially compliant mobile robot navigation via inverse reinforcement learning. Int J Robot Res 35(11):1289–1307CrossRef
20.
go back to reference Vemula A, Muelling K, Oh J (2017) Modeling cooperative navigation in dense human crowds. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1685–1692 Vemula A, Muelling K, Oh J (2017) Modeling cooperative navigation in dense human crowds. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1685–1692
21.
go back to reference Tai L, Zhang J, Liu M, Burgard W (2018) Socially compliant navigation through raw depth inputs with generative adversarial imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1111–1117 Tai L, Zhang J, Liu M, Burgard W (2018) Socially compliant navigation through raw depth inputs with generative adversarial imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1111–1117
22.
go back to reference Tsai C-E, Oh J (2019) A generative approach for socially compliant navigation, Ph.D. dissertation, Carnegie Mellon University Pittsburgh, PA Tsai C-E, Oh J (2019) A generative approach for socially compliant navigation, Ph.D. dissertation, Carnegie Mellon University Pittsburgh, PA
23.
go back to reference Hall ET, Birdwhistell RL, Bock B, Bohannan P, DieboldJr AR, Durbin M, Edmonson MS, Fischer J, Hymes D, Kimball ST et al (1968) Proxemics [and comments and replies]. Curr Anthr 9(2/3):83–108CrossRef Hall ET, Birdwhistell RL, Bock B, Bohannan P, DieboldJr AR, Durbin M, Edmonson MS, Fischer J, Hymes D, Kimball ST et al (1968) Proxemics [and comments and replies]. Curr Anthr 9(2/3):83–108CrossRef
24.
go back to reference Narayanan VK, Spalanzani A, Pasteau F, Babel M (2015) On equitably approaching and joining a group of interacting humans. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4071–4077 Narayanan VK, Spalanzani A, Pasteau F, Babel M (2015) On equitably approaching and joining a group of interacting humans. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4071–4077
25.
go back to reference Gómez JV, Mavridis N, Garrido S (2013) Social path planning: generic human-robot interaction framework for robotic navigation tasks. In: 2nd Intl. Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities Gómez JV, Mavridis N, Garrido S (2013) Social path planning: generic human-robot interaction framework for robotic navigation tasks. In: 2nd Intl. Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities
26.
go back to reference Gómez JV, Mavridis N, Garrido S (2014) Fast marching solution for the social path planning problem. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1871–1876 Gómez JV, Mavridis N, Garrido S (2014) Fast marching solution for the social path planning problem. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 1871–1876
27.
go back to reference Truong X-T, Ngo T-D (2017) to approach humans?: a unified framework for approaching pose prediction and socially aware robot navigation. IEEE Trans Cognit Dev Syst 10(3):557–572CrossRef Truong X-T, Ngo T-D (2017) to approach humans?: a unified framework for approaching pose prediction and socially aware robot navigation. IEEE Trans Cognit Dev Syst 10(3):557–572CrossRef
28.
go back to reference Zhang S, Liu J-T (2019) Modeling of human’s comfort needs based on multi-dimensional service situations. Robot (4):10 Zhang S, Liu J-T (2019) Modeling of human’s comfort needs based on multi-dimensional service situations. Robot (4):10
29.
go back to reference Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23(5):874–883CrossRef Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23(5):874–883CrossRef
30.
go back to reference Kruse T, Kirsch A, Sisbot EA, Alami R (2010) Exploiting human cooperation in human-centered robot navigation. In: 19th International Symposium in Robot and Human Interactive Communication. IEEE, pp. 192–197 Kruse T, Kirsch A, Sisbot EA, Alami R (2010) Exploiting human cooperation in human-centered robot navigation. In: 19th International Symposium in Robot and Human Interactive Communication. IEEE, pp. 192–197
31.
go back to reference Hall ET (1969) The hidden dimension: man’s use of space in public and private the bodley head. Toronto, London, Sydney, p 121 Hall ET (1969) The hidden dimension: man’s use of space in public and private the bodley head. Toronto, London, Sydney, p 121
32.
go back to reference Svenstrup M, Bak T, Andersen H.J (2010) Trajectory planning for robots in dynamic human environments. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4293–4298 Svenstrup M, Bak T, Andersen H.J (2010) Trajectory planning for robots in dynamic human environments. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 4293–4298
33.
go back to reference Huang K-C, Li J-Y, Fu L-C (2010) Human-oriented navigation for service providing in home environment. In: Proceedings of SICE Annual Conference 2010. IEEE, pp. 1892–1897 Huang K-C, Li J-Y, Fu L-C (2010) Human-oriented navigation for service providing in home environment. In: Proceedings of SICE Annual Conference 2010. IEEE, pp. 1892–1897
34.
go back to reference Papadakis P, Rives P, Spalanzani A (2014) Adaptive spacing in human-robot interactions. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE , pp. 2627–2632 Papadakis P, Rives P, Spalanzani A (2014) Adaptive spacing in human-robot interactions. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE , pp. 2627–2632
35.
go back to reference Patompak P, Jeong S, Nilkhamhang I, Chong NY (2019) Learning proxemics for personalized human-robot social interaction. Int J Soc Robot 12(1):267–280CrossRef Patompak P, Jeong S, Nilkhamhang I, Chong NY (2019) Learning proxemics for personalized human-robot social interaction. Int J Soc Robot 12(1):267–280CrossRef
36.
go back to reference Tai L, Paolo G, Liu M (2017) Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 31–36 Tai L, Paolo G, Liu M (2017) Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 31–36
37.
go back to reference Long P, Fanl T, Liao X, Liu W, Zhang H, Pan J (2018) Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 6252–6259 Long P, Fanl T, Liao X, Liu W, Zhang H, Pan J (2018) Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 6252–6259
38.
go back to reference Fan T, Long P, Liu W, Pan J (2020) Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. Int J Robot Res 39(7):856–892CrossRef Fan T, Long P, Liu W, Pan J (2020) Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. Int J Robot Res 39(7):856–892CrossRef
39.
go back to reference Chen YF, Liu M, Everett M, How JP (2017) Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 285–292 Chen YF, Liu M, Everett M, How JP (2017) Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 285–292
40.
go back to reference Everett M, Chen YF, How JP (2018) Motion planning among dynamic, decision-making agents with deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 3052–3059 Everett M, Chen YF, How JP (2018) Motion planning among dynamic, decision-making agents with deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 3052–3059
41.
go back to reference Chen YF, Everett M, Liu M, How JP (2017) Socially aware motion planning with deep reinforcement learning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1343–1350 Chen YF, Everett M, Liu M, How JP (2017) Socially aware motion planning with deep reinforcement learning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1343–1350
42.
go back to reference Chen C, Liu Y, Kreiss S, Alahi A (2019) Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp. 6015–6022 Chen C, Liu Y, Kreiss S, Alahi A (2019) Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp. 6015–6022
43.
go back to reference Vemula A, Muelling K, Oh J (2018)Social attention: modeling attention in human crowds. In: 2018 IEEE international Conference on Robotics and Automation (ICRA). IEEE, pp. 1–7 Vemula A, Muelling K, Oh J (2018)Social attention: modeling attention in human crowds. In: 2018 IEEE international Conference on Robotics and Automation (ICRA). IEEE, pp. 1–7
Metadata
Title
Crowd-Comfort Robot Navigation Among Dynamic Environment Based on Social-Stressed Deep Reinforcement Learning
Authors
Zhengxi Hu
Yingli Zhao
Sen Zhang
Lei Zhou
Jingtai Liu
Publication date
29-11-2021
Publisher
Springer Netherlands
Published in
International Journal of Social Robotics / Issue 4/2022
Print ISSN: 1875-4791
Electronic ISSN: 1875-4805
DOI
https://doi.org/10.1007/s12369-021-00838-x

Other articles of this Issue 4/2022

International Journal of Social Robotics 4/2022 Go to the issue

Premium Partners