Skip to main content
Top
Published in: Journal of Materials Science 16/2019

21-05-2019 | Electronic materials

Crystal structure, chemical bonding, and physical properties of layered AIrSn2 (A = Sr and Ba)

Authors: Madalynn Marshall, Lingyi Xing, Zuzanna Sobczak, Joanna Blawat, Tomasz Klimczuk, Rongying Jin, Weiwei Xie

Published in: Journal of Materials Science | Issue 16/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report the experimental and theoretical investigation of structure, chemical bonding interactions, and physical properties of new ternary stannides AIrSn2 (A = Sr and Ba). AIrSn2 (A = Sr and Ba) crystallizes in the orthorhombic Re3B-type structure with the space group Cmcm (No. 64). According to single-crystal X-ray diffraction results, the structure of AIrSn2 (A = Sr and Ba) can be considered as a Zintl-type compound with heterogeneous polyanionic [IrSn2]2− and A2+. The specific heat down to 1.8 K shows no evidence for bulk superconductivity in either SrIrSn2 or BaIrSn2. Electronic structure calculations, especially chemical bonding interactions in SrIrSn2 and BaIrSn2, match well with the observed structural stability and metallic nature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Buzea C, Yamashita T (2001) Review of the superconducting properties of MgB2. Supercond Sci Technol 14:R115CrossRef Buzea C, Yamashita T (2001) Review of the superconducting properties of MgB2. Supercond Sci Technol 14:R115CrossRef
2.
go back to reference Shen BG, Sun JR, Hu FX et al (2009) Recent progress in exploring magnetocaloric materials. Adv Mater 21:4545–4564CrossRef Shen BG, Sun JR, Hu FX et al (2009) Recent progress in exploring magnetocaloric materials. Adv Mater 21:4545–4564CrossRef
3.
go back to reference Wang JL, Caron L, Campbell SJ et al (2013) Driving magnetostructural transitions in layered intermetallic compounds. Phys Rev Lett 110:217211CrossRef Wang JL, Caron L, Campbell SJ et al (2013) Driving magnetostructural transitions in layered intermetallic compounds. Phys Rev Lett 110:217211CrossRef
4.
go back to reference Bednorz JG, Müller KA (1986) Possible high-Tc superconductivity in the Ba–La–Cu–O system. Z Für Phys B Condens Matter 64:189–193CrossRef Bednorz JG, Müller KA (1986) Possible high-Tc superconductivity in the Ba–La–Cu–O system. Z Für Phys B Condens Matter 64:189–193CrossRef
5.
go back to reference Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-Based Layered Superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J Am Chem Soc 130:3296–3297CrossRef Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-Based Layered Superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J Am Chem Soc 130:3296–3297CrossRef
6.
go back to reference Hsu F-C, Luo J-Y, Yeh K-W et al (2008) Superconductivity in the PbO-type structure alpha-FeSe. Proc Natl Acad Sci USA 105:14262–14264CrossRef Hsu F-C, Luo J-Y, Yeh K-W et al (2008) Superconductivity in the PbO-type structure alpha-FeSe. Proc Natl Acad Sci USA 105:14262–14264CrossRef
7.
go back to reference Schäfer H, Eisenmann B, Müller W (1973) Zintl phases: transitions between metallic and ionic bonding. Angew Chem Int Ed Engl 12:694–712CrossRef Schäfer H, Eisenmann B, Müller W (1973) Zintl phases: transitions between metallic and ionic bonding. Angew Chem Int Ed Engl 12:694–712CrossRef
8.
go back to reference Kauzlarich SM, Brown SR, Snyder GJ (2007) Zintl phases for thermoelectric devices. Dalton Trans 0:2099–2107CrossRef Kauzlarich SM, Brown SR, Snyder GJ (2007) Zintl phases for thermoelectric devices. Dalton Trans 0:2099–2107CrossRef
9.
go back to reference Brown SR, Kauzlarich SM, Gascoin F, Snyder GJ (2006) Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem Mater 18:1873–1877CrossRef Brown SR, Kauzlarich SM, Gascoin F, Snyder GJ (2006) Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem Mater 18:1873–1877CrossRef
10.
go back to reference Luo H, Krizan JW, Muechler L et al (2015) A large family of filled skutterudites stabilized by electron count. Nat Commun 6:6489CrossRef Luo H, Krizan JW, Muechler L et al (2015) A large family of filled skutterudites stabilized by electron count. Nat Commun 6:6489CrossRef
11.
go back to reference Eisenmann B, Asbrand M (2015) Crystal structure of dipotassium bismutidostannate, K2SnBi. Z Für Krist - Cryst Mater 198:283–284 Eisenmann B, Asbrand M (2015) Crystal structure of dipotassium bismutidostannate, K2SnBi. Z Für Krist - Cryst Mater 198:283–284
12.
go back to reference Slater BR, Bie H, Gaultois MW et al (2011) Rare-earth cobalt gallides RE4Co3Ga16 (RE = Gd–Er, Y): self-interstitial derivatives of RE2CoGa8. Eur J Inorg Chem 2011:3896–3903CrossRef Slater BR, Bie H, Gaultois MW et al (2011) Rare-earth cobalt gallides RE4Co3Ga16 (RE = Gd–Er, Y): self-interstitial derivatives of RE2CoGa8. Eur J Inorg Chem 2011:3896–3903CrossRef
13.
go back to reference Curro NJ, Caldwell T, Bauer ED et al (2005) Unconventional superconductivity in PuCoGa5. Nature 434:622–625CrossRef Curro NJ, Caldwell T, Bauer ED et al (2005) Unconventional superconductivity in PuCoGa5. Nature 434:622–625CrossRef
14.
go back to reference Klintberg LE, Goh SK, Alireza PL et al (2012) Pressure- and composition-induced structural quantum phase transition in the cubic superconductor (Sr/Ca)3Ir4Sn13. Phys Rev Lett 109:237008CrossRef Klintberg LE, Goh SK, Alireza PL et al (2012) Pressure- and composition-induced structural quantum phase transition in the cubic superconductor (Sr/Ca)3Ir4Sn13. Phys Rev Lett 109:237008CrossRef
15.
go back to reference Kuo CN, Tseng CW, Wang CM et al (2015) Lattice distortion associated with Fermi-surface reconstruction in Sr3Ir4Sn13. Phys Rev B 91:165141CrossRef Kuo CN, Tseng CW, Wang CM et al (2015) Lattice distortion associated with Fermi-surface reconstruction in Sr3Ir4Sn13. Phys Rev B 91:165141CrossRef
16.
go back to reference Mazzone DG, Gerber S, Gavilano JL et al (2015) Crystal structure and phonon softening in Ca3Ir4Sn13. Phys Rev B 92:024101CrossRef Mazzone DG, Gerber S, Gavilano JL et al (2015) Crystal structure and phonon softening in Ca3Ir4Sn13. Phys Rev B 92:024101CrossRef
17.
go back to reference Pöttgen R, Hoffmann R-D, Möller MH et al (1999) Syntheses, crystal structures, and properties of EuRhIn, EuIr2, and EuIrSn2. J Solid State Chem 145:174–181CrossRef Pöttgen R, Hoffmann R-D, Möller MH et al (1999) Syntheses, crystal structures, and properties of EuRhIn, EuIr2, and EuIrSn2. J Solid State Chem 145:174–181CrossRef
18.
go back to reference Hoffmann R-D, Pöttgen R (2000) CaRhIn with TiNiSi type structure and CaTIn2 (T = Rh, Ir) with a new filled version of the zintl phase CaIn2. Z Für Anorg Allg Chem 626:28–35CrossRef Hoffmann R-D, Pöttgen R (2000) CaRhIn with TiNiSi type structure and CaTIn2 (T = Rh, Ir) with a new filled version of the zintl phase CaIn2. Z Für Anorg Allg Chem 626:28–35CrossRef
19.
go back to reference Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452CrossRef Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452CrossRef
20.
go back to reference Dinnebier RE, Billinge SJL (2008) Powder diffraction: theory and practice. Royal Society of Chemistry, LondonCrossRef Dinnebier RE, Billinge SJL (2008) Powder diffraction: theory and practice. Royal Society of Chemistry, LondonCrossRef
21.
go back to reference Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8CrossRef Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8CrossRef
22.
go back to reference Sheldrick GM (2015) SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr Sect Found Adv 71:3–8CrossRef Sheldrick GM (2015) SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr Sect Found Adv 71:3–8CrossRef
23.
go back to reference Andersen OK (1975) Linear methods in band theory. Phys Rev B 12:3060–3083CrossRef Andersen OK (1975) Linear methods in band theory. Phys Rev B 12:3060–3083CrossRef
24.
go back to reference Andersen OK, Jepsen O (1984) Explicit, first-principles tight-binding theory. Phys Rev Lett 53:2571–2574CrossRef Andersen OK, Jepsen O (1984) Explicit, first-principles tight-binding theory. Phys Rev Lett 53:2571–2574CrossRef
25.
go back to reference Krier G, Jepsen O, Burkhardt A, Andersen, OK (1995) The TB-LMTO-ASA program. Stuttgart, April Krier G, Jepsen O, Burkhardt A, Andersen, OK (1995) The TB-LMTO-ASA program. Stuttgart, April
26.
go back to reference Deringer VL, Tchougréeff AL, Dronskowski R (2011) Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 115:5461–5466CrossRef Deringer VL, Tchougréeff AL, Dronskowski R (2011) Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 115:5461–5466CrossRef
27.
go back to reference Skriver HL (2012) The LMTO method Muffin–Tin orbitals and electronic structure. Springer, Berlin Skriver HL (2012) The LMTO method Muffin–Tin orbitals and electronic structure. Springer, Berlin
28.
go back to reference Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRef
29.
go back to reference Schlüter M, Häussermann U, Heying B, Pöttgen R (2003) Tin–magnesium substitution in Ir3Sn7—structure and chemical bonding in MgxIr3Sn7–x (x = 0–1.67). J Solid State Chem 173:418–424CrossRef Schlüter M, Häussermann U, Heying B, Pöttgen R (2003) Tin–magnesium substitution in Ir3Sn7—structure and chemical bonding in MgxIr3Sn7–x (x = 0–1.67). J Solid State Chem 173:418–424CrossRef
30.
go back to reference McMorrow DF, Jensen J, Rønnow HM (1997) Magnetism in metals: A Symposium in Memory of Allan Mackintosh, Copenhagen, 26–29 August 1996: Invited Review Papers. Kgl. Danske Videnskabernes Selskab McMorrow DF, Jensen J, Rønnow HM (1997) Magnetism in metals: A Symposium in Memory of Allan Mackintosh, Copenhagen, 26–29 August 1996: Invited Review Papers. Kgl. Danske Videnskabernes Selskab
Metadata
Title
Crystal structure, chemical bonding, and physical properties of layered AIrSn2 (A = Sr and Ba)
Authors
Madalynn Marshall
Lingyi Xing
Zuzanna Sobczak
Joanna Blawat
Tomasz Klimczuk
Rongying Jin
Weiwei Xie
Publication date
21-05-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03681-8

Other articles of this Issue 16/2019

Journal of Materials Science 16/2019 Go to the issue

Premium Partners