Skip to main content
Top
Published in: Polymer Bulletin 1/2013

01-01-2013 | Original Paper

Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent

Authors: Ru Zhang, Yaming Wang, Kaojin Wang, Guoqiang Zheng, Qian Li, Changyu Shen

Published in: Polymer Bulletin | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Poly(lactic acid) (PLA) is a well-known biodegradable and biocompatible polyester with intrinsically slow crystallization rate. To extend its applications to the field where heat resistance is required, increasing the crystallization rate of the material becomes critical. In this note, the nucleation effect of supramolecular inclusion complex (IC), organized by non-covalent interactions through threading α-cyclodextrin molecules onto PLA chains, on the crystallization of PLA was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. The formation of IC was confirmed by wide-angle X-ray diffraction and DSC measurements. It was found that the presence of PLA-IC significantly promoted the crystallization of PLA from both the non-isothermal and isothermal crystallization experiments. The nucleation mechanism was also discussed to some extent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm 21:117–132CrossRef Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm 21:117–132CrossRef
2.
go back to reference Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718CrossRef Wang Y, Gómez Ribelles JL, Salmerón Sánchez M, Mano JF (2005) Morphological contributions to glass transition in poly(l-lactic acid). Macromolecules 38:4712–4718CrossRef
3.
go back to reference Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRef Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRef
4.
go back to reference Tsuji H, Takai H, Fukuda N, Takikawa H (2006) Non-isothermal crystallization behavior of poly(l-lactic acid) in the presence of various additives. Macromol Mater Eng 291:325–335CrossRef Tsuji H, Takai H, Fukuda N, Takikawa H (2006) Non-isothermal crystallization behavior of poly(l-lactic acid) in the presence of various additives. Macromol Mater Eng 291:325–335CrossRef
5.
go back to reference Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J Appl Polym Sci 89:1203–1210CrossRef Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J Appl Polym Sci 89:1203–1210CrossRef
6.
go back to reference Li M, Hu D, Wang Y, Shen C (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50:2298–2305CrossRef Li M, Hu D, Wang Y, Shen C (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50:2298–2305CrossRef
7.
go back to reference Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131CrossRef
8.
go back to reference Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45:8239–8251CrossRef Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45:8239–8251CrossRef
9.
go back to reference Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules 44:6496–6502CrossRef Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules 44:6496–6502CrossRef
10.
go back to reference Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces 3:3744–3753CrossRef Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces 3:3744–3753CrossRef
11.
go back to reference Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411CrossRef Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411CrossRef
12.
go back to reference Li J, Chen D, Gui B, Gu M, Ren J (2011) Crystallization morphology and crystallization kinetics of poly(lactic acid): effect of N-aminophthalimide as nucleating agent. Polym Bull 67:775–791CrossRef Li J, Chen D, Gui B, Gu M, Ren J (2011) Crystallization morphology and crystallization kinetics of poly(lactic acid): effect of N-aminophthalimide as nucleating agent. Polym Bull 67:775–791CrossRef
13.
go back to reference Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules 44:1233–1237CrossRef Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules 44:1233–1237CrossRef
14.
go back to reference Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Nucleating agent for poly(l-lactic acid)-an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103:198–203CrossRef Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Nucleating agent for poly(l-lactic acid)-an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103:198–203CrossRef
15.
go back to reference Xu H, Tang S, Chen J, Yin P, Pu W, Lu Y (2012) Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly((d-lactic acid) blends with moderate optical purity. Polym Bull 68:1135–1151CrossRef Xu H, Tang S, Chen J, Yin P, Pu W, Lu Y (2012) Thermal and phase-separation behavior of injection-molded poly(l-lactic acid)/poly((d-lactic acid) blends with moderate optical purity. Polym Bull 68:1135–1151CrossRef
16.
go back to reference Tachibana Y, Maeda T, Ito O, Maeda Y, Kunioka M (2010) Biobased myo-inositol as nucleator and stabilizer for poly(lactic acid). Polym Degrad Stab 95:1321–1329CrossRef Tachibana Y, Maeda T, Ito O, Maeda Y, Kunioka M (2010) Biobased myo-inositol as nucleator and stabilizer for poly(lactic acid). Polym Degrad Stab 95:1321–1329CrossRef
17.
go back to reference Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(l-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303CrossRef Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(l-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303CrossRef
18.
go back to reference Wang Y, Tong B, Hou S, Li M, Shen C (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos A 42:66–74CrossRef Wang Y, Tong B, Hou S, Li M, Shen C (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos A 42:66–74CrossRef
19.
go back to reference Cai J, Liu M, Wang L, Yao K, Li S, Xiong H (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRef Cai J, Liu M, Wang L, Yao K, Li S, Xiong H (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRef
20.
go back to reference Wenz G (1994) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed 33:803–822CrossRef Wenz G (1994) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed 33:803–822CrossRef
21.
go back to reference Inoue Y, Hoshi H, Sakurai M, Chûjô R (1985) Geometry of cyclohexaamylose inclusion complexes with some substituted benzenes in aqueous solution based on carbon-13 NMR chemical shifts. J Am Chem Soc 107:2319–2323CrossRef Inoue Y, Hoshi H, Sakurai M, Chûjô R (1985) Geometry of cyclohexaamylose inclusion complexes with some substituted benzenes in aqueous solution based on carbon-13 NMR chemical shifts. J Am Chem Soc 107:2319–2323CrossRef
22.
go back to reference Harada A, Nishiyama T, Kawaguchi Y, Okada M, Kamachi M (1997) Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins. Macromolecules 30:7115–7118CrossRef Harada A, Nishiyama T, Kawaguchi Y, Okada M, Kamachi M (1997) Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins. Macromolecules 30:7115–7118CrossRef
23.
go back to reference He Y, Inoue Y (2003) α-Cyclodextrin-enhanced crystallization of poly(3-hydroxybutyrate). Biomacromolecules 4:1865–1867CrossRef He Y, Inoue Y (2003) α-Cyclodextrin-enhanced crystallization of poly(3-hydroxybutyrate). Biomacromolecules 4:1865–1867CrossRef
24.
go back to reference Vogel R, Tändler B, Häussler L, Jehnichen D, Brünig H (2006) Melt spinning of poly(3-hydroxybutyrate) fibers for tissue engineering using α-cyclodextrin/polymer inclusion complexes as the nucleating agent. Macromol Biosci 6:730–736CrossRef Vogel R, Tändler B, Häussler L, Jehnichen D, Brünig H (2006) Melt spinning of poly(3-hydroxybutyrate) fibers for tissue engineering using α-cyclodextrin/polymer inclusion complexes as the nucleating agent. Macromol Biosci 6:730–736CrossRef
25.
go back to reference Dong T, He Y, Zhu B, Shin KM, Inoue Y (2005) Nucleation mechanism of α-cyclodextrin-enhanced crystallization of some semicrystalline aliphatic polymers. Macromolecules 38:7736–7744CrossRef Dong T, He Y, Zhu B, Shin KM, Inoue Y (2005) Nucleation mechanism of α-cyclodextrin-enhanced crystallization of some semicrystalline aliphatic polymers. Macromolecules 38:7736–7744CrossRef
26.
go back to reference Dong T, Mori T, Aoyama T, Inoue Y (2010) Rapid crystallization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer accelerated by cyclodextrin-complex as nucleating agent. Carbohydr Polym 80:387–393CrossRef Dong T, Mori T, Aoyama T, Inoue Y (2010) Rapid crystallization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer accelerated by cyclodextrin-complex as nucleating agent. Carbohydr Polym 80:387–393CrossRef
27.
go back to reference Pinheiro A, Mano JF (2009) Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym Test 28:89–95CrossRef Pinheiro A, Mano JF (2009) Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym Test 28:89–95CrossRef
28.
go back to reference Rusa CC, Tonelli AE (2000) Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend. Macromolecules 33:5321–5324CrossRef Rusa CC, Tonelli AE (2000) Polymer/polymer inclusion compounds as a novel approach to obtaining a PLLA/PCL intimately compatible blend. Macromolecules 33:5321–5324CrossRef
29.
go back to reference Ohya Y, Takamido S, Nagahama K, Ouchi T, Ooya T, Katoono R, Yui N (2007) Molecular “screw and nut”: α-cyclodextrin recognizes polylactide chirality. Macromolecules 40:6441–6444CrossRef Ohya Y, Takamido S, Nagahama K, Ouchi T, Ooya T, Katoono R, Yui N (2007) Molecular “screw and nut”: α-cyclodextrin recognizes polylactide chirality. Macromolecules 40:6441–6444CrossRef
30.
go back to reference Takeo Y, Kuge T (1970) Complexes of starchy materials with organic compounds. Agric Biol Chem 34:1784–1794 Takeo Y, Kuge T (1970) Complexes of starchy materials with organic compounds. Agric Biol Chem 34:1784–1794
31.
go back to reference Avrami M (1940) Kinetics of phase change. II transformation time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRef Avrami M (1940) Kinetics of phase change. II transformation time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRef
32.
go back to reference Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRef Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9:177–184CrossRef
Metadata
Title
Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent
Authors
Ru Zhang
Yaming Wang
Kaojin Wang
Guoqiang Zheng
Qian Li
Changyu Shen
Publication date
01-01-2013
Publisher
Springer-Verlag
Published in
Polymer Bulletin / Issue 1/2013
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-012-0814-y

Other articles of this Issue 1/2013

Polymer Bulletin 1/2013 Go to the issue

Premium Partners