Skip to main content
Top
Published in: The International Journal of Life Cycle Assessment 2/2021

15-01-2021 | LCA FOR AGRICULTURE

Cup plant, an alternative to conventional silage from a LCA perspective

Authors: Jaroslav Bernas, Tereza Bernasová, Pedro Gerstberger, Jan Moudrý, Petr Konvalina, Jan Moudrý Jr.

Published in: The International Journal of Life Cycle Assessment | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

The growing awareness of the importance of biodiversity in agroecosystems in increasing and ensuring the supply of biomass has led to heightened interest from governments and farmers in alternative crops. This article assesses one such alternative crop, cup plant (Silphium perfoliatum L.), in terms of the environmental aspects of cultivation for forage production. Many studies have previously focused on cup plant, but so far, this plant has not been assessed using the life cycle assessment (LCA) method.

Materials and methods

This study compares the environmental load of cup plant with the most commonly grown silage crops in Central European conditions—maize—and with another common forage crop—lucerne using LCA. The system boundaries include all the processes from cradle to farm gate and both mass-based (1 ton of dry matter) and area-based (1 ha of monoculture) functional units were chosen for the purposes of this study. The results cover the impact categories related to the agricultural LCAs, and the ReCiPe Midpoint (H) characterization model was used for the data expression, by using SimaPro 9.0.0.40 software.

Results

This study compares the cultivation of cup plant with the most commonly grown silage crop in Central European conditions—maize—and with another common forage crop—lucerne. The paper shows the potential of cup plant to replace conventional silage (maize and lucerne silage mix) with certain environmental savings in selected impact categories, and importantly, while still maintaining the same performance levels in dairy farming as with conventional silage, as already reported in previous publications. For the Czech Republic alone, this would, in practice, mean replacing up to 50,000 ha of silage maize and reducing the environmental load by about tens of percent or more within the various impact categories and years of cultivation.

Conclusion

Cup plant can replace the yield and quality of silage maize, represents a lower environmental load per unit of production and unit of area and generally carries many other benefits. Thus, cup plant is a recommendable option for dairy farming. Given the recent experience and knowledge of the issue, the cup plant can be considered an effective alternative to conventional silage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Albrecht KA, Goldstein W (1997) Silphium perfoliatum: A North American prairie plant with potential as a forage crop. In Conference June 8–19 Conference Year, Winnipeg 167–168 Albrecht KA, Goldstein W (1997) Silphium perfoliatum: A North American prairie plant with potential as a forage crop. In Conference June 8–19 Conference Year, Winnipeg 167–168
go back to reference Albrecht KA, Han KJ, Combs DK (2017) Silphium perfoliatum L. silage as alterative to lucerne and maize silage in dairy cow rations. Grassland resources for extensive farming systems in marginal lands: major drivers and future scenarios 22(1): 500–502 Albrecht KA, Han KJ, Combs DK (2017) Silphium perfoliatum L. silage as alterative to lucerne and maize silage in dairy cow rations. Grassland resources for extensive farming systems in marginal lands: major drivers and future scenarios 22(1): 500–502
go back to reference Aurbacher J, Benke M, Formowitz B, Glauert T, Heiermann M, Herrmann C, Idler C, Kornatz P, Nehring A, Rieckmann C, Rieckmann G (2012) Energiepflanzen für Biogasanlagen (Broschüre No. 553). Fachagentur Nachwachsende Rohstoffe eV: Rostock, Germany, 1–84 Aurbacher J, Benke M, Formowitz B, Glauert T, Heiermann M, Herrmann C, Idler C, Kornatz P, Nehring A, Rieckmann C, Rieckmann G (2012) Energiepflanzen für Biogasanlagen (Broschüre No. 553). Fachagentur Nachwachsende Rohstoffe eV: Rostock, Germany, 1–84
go back to reference Bacenetti J, Negri M, Fiala M, González-García S (2013) Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci Total Environ 463:541–551CrossRef Bacenetti J, Negri M, Fiala M, González-García S (2013) Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci Total Environ 463:541–551CrossRef
go back to reference Bauböck R, Karpenstein-Machan M, Kappas M (2014) Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany). Environ Sci Eur 26(1):19CrossRef Bauböck R, Karpenstein-Machan M, Kappas M (2014) Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany). Environ Sci Eur 26(1):19CrossRef
go back to reference Bellarby J, Foereid B, Hastings A (2008) Cool farming: climate impacts of agriculture and mitigation potential. Scotland, Aberdeen Bellarby J, Foereid B, Hastings A (2008) Cool farming: climate impacts of agriculture and mitigation potential. Scotland, Aberdeen
go back to reference Bernas J, Konvalina P, Brom J, Moudrý J Jr, Veselá T, Bucur D, Dirja M, Shim S (2019a) Agrotechnology as key factor in effective use of water on arable land. In Assessment and Protection of Water Resources in the Czech Republic, Springer, Cham Bernas J, Konvalina P, Brom J, Moudrý J Jr, Veselá T, Bucur D, Dirja M, Shim S (2019a) Agrotechnology as key factor in effective use of water on arable land. In Assessment and Protection of Water Resources in the Czech Republic, Springer, Cham
go back to reference Bernas J, Moudrý J Jr, Kopecký M, Konvalina P, Štěrba Z (2019b) Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy 9(2):98CrossRef Bernas J, Moudrý J Jr, Kopecký M, Konvalina P, Štěrba Z (2019b) Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy 9(2):98CrossRef
go back to reference Bessou C, Basset-Mens C, Latunussa C, Vélu A, Heitz H, Vannière H, Caliman JP (2016) Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. The Int J Life Cycle Assess 21(3):297–310CrossRef Bessou C, Basset-Mens C, Latunussa C, Vélu A, Heitz H, Vannière H, Caliman JP (2016) Partial modelling of the perennial crop cycle misleads LCA results in two contrasted case studies. The Int J Life Cycle Assess 21(3):297–310CrossRef
go back to reference Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18(2):340–361CrossRef Bessou C, Basset-Mens C, Tran T, Benoist A (2013) LCA applied to perennial cropping systems: a review focused on the farm stage. Int J Life Cycle Assess 18(2):340–361CrossRef
go back to reference Bufe C, Korevaar H (2018) Evaluation of additional crops for Dutch list of ecological focus area: evaluation of Miscanthus, Silphium perfoliatum, fallow sown in with melliferous plants and sunflowers in seed mixtures for catch crops. Wageningen Research Foundation (WR) business unit Agrosystems Research No 793 Bufe C, Korevaar H (2018) Evaluation of additional crops for Dutch list of ecological focus area: evaluation of Miscanthus, Silphium perfoliatum, fallow sown in with melliferous plants and sunflowers in seed mixtures for catch crops. Wageningen Research Foundation (WR) business unit Agrosystems Research No 793
go back to reference Burke M, Emerick K (2016) Adaptation to climate change: evidence from US agriculture. Am Econ J- Econ Policy 8(3):106–140CrossRef Burke M, Emerick K (2016) Adaptation to climate change: evidence from US agriculture. Am Econ J- Econ Policy 8(3):106–140CrossRef
go back to reference Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Current Opinion in Environmental Sustainability 8:39–43CrossRef Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Current Opinion in Environmental Sustainability 8:39–43CrossRef
go back to reference Cattani M, Guzzo N, Mantovani R, Bailoni L (2017) Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. J Anim Sci Biotechnol 8(1):15CrossRef Cattani M, Guzzo N, Mantovani R, Bailoni L (2017) Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality. J Anim Sci Biotechnol 8(1):15CrossRef
go back to reference Chimento C, Almagro M, Amaducci S (2016) Carbon sequestration potential in perennial bioenergy crops: the importance of organic matter inputs and its physical protection. Gcb Bioenergy 8(1):111–121CrossRef Chimento C, Almagro M, Amaducci S (2016) Carbon sequestration potential in perennial bioenergy crops: the importance of organic matter inputs and its physical protection. Gcb Bioenergy 8(1):111–121CrossRef
go back to reference De Klein C, Novoa RS, Ogle S, Smith KA, Rochette P, Wirth TC, McConkey BG, Mosier A, Rypdal K, Walsh M, Williams SA (2006) N2O emissions from managed soils and CO2 emissions from lime and urea application. IPCC guidelines for National greenhouse gas inventories prepared by the National greenhouse gas inventories programme 4:1–54 De Klein C, Novoa RS, Ogle S, Smith KA, Rochette P, Wirth TC, McConkey BG, Mosier A, Rypdal K, Walsh M, Williams SA (2006) N2O emissions from managed soils and CO2 emissions from lime and urea application. IPCC guidelines for National greenhouse gas inventories prepared by the National greenhouse gas inventories programme 4:1–54
go back to reference De Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenerg 34(2):188–202CrossRef De Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenerg 34(2):188–202CrossRef
go back to reference Dijkman TJ, Basset-Mens C, Antón A, Núñez M (2018) LCA of food and agriculture. Life Cycle Assessment. Springer, Cham, pp 723–754CrossRef Dijkman TJ, Basset-Mens C, Antón A, Núñez M (2018) LCA of food and agriculture. Life Cycle Assessment. Springer, Cham, pp 723–754CrossRef
go back to reference Dressler D, Loewen A, Nelles M (2012) Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int J Life Cycle Assess 17(9):1104–1115CrossRef Dressler D, Loewen A, Nelles M (2012) Life cycle assessment of the supply and use of bioenergy: impact of regional factors on biogas production. Int J Life Cycle Assess 17(9):1104–1115CrossRef
go back to reference Durlinger B, Koukouna E, Broekema R, Van Paassen M, Scholten J (2017) Agri-footprint 4.0 Durlinger B, Koukouna E, Broekema R, Van Paassen M, Scholten J (2017) Agri-footprint 4.0
go back to reference Ericsson K, Rosenqvist H, Nilsson LJ (2009) Energy crop production costs in the EU. Biomass Bioenerg 33(11):1577–1586CrossRef Ericsson K, Rosenqvist H, Nilsson LJ (2009) Energy crop production costs in the EU. Biomass Bioenerg 33(11):1577–1586CrossRef
go back to reference Escobar N, Ramírez-Sanz C, Chueca P, Moltó E, Sanjuan N (2017) Multiyear life cycle assessment of switchgrass (Panicum virgatum L.) production in the Mediterranean region of Spain: a comparative case study. Biomass Bioenergy 107:74–85CrossRef Escobar N, Ramírez-Sanz C, Chueca P, Moltó E, Sanjuan N (2017) Multiyear life cycle assessment of switchgrass (Panicum virgatum L.) production in the Mediterranean region of Spain: a comparative case study. Biomass Bioenergy 107:74–85CrossRef
go back to reference Exnerova Z, Beranova J (2017) Agriculture (CRF sector 3). In: Krtkova E (ed) National Greenhouse Gas Inventory Report of The Czech Republic (reported inventories 1990–2015), 1st edn. Prague, Czech Republic, Czech Hydrometeorological Institute, pp 225–252 Exnerova Z, Beranova J (2017) Agriculture (CRF sector 3). In: Krtkova E (ed) National Greenhouse Gas Inventory Report of The Czech Republic (reported inventories 1990–2015), 1st edn. Prague, Czech Republic, Czech Hydrometeorological Institute, pp 225–252
go back to reference Gansberger M, Montgomery LF, Liebhard P (2015) Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: a review. Ind Crop Prod 63:362–372CrossRef Gansberger M, Montgomery LF, Liebhard P (2015) Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: a review. Ind Crop Prod 63:362–372CrossRef
go back to reference Gansberger M, Stüger HP, Weinhappel M, Moder K, Liebhard P, von Gehren P, Mayr J, Ratzenböck A (2017) Germination characteristic of Silphium perfoliatum L. seeds. Die Bodenkultur: J Land Management Food Environ 68(2):73–79CrossRef Gansberger M, Stüger HP, Weinhappel M, Moder K, Liebhard P, von Gehren P, Mayr J, Ratzenböck A (2017) Germination characteristic of Silphium perfoliatum L. seeds. Die Bodenkultur: J Land Management Food Environ 68(2):73–79CrossRef
go back to reference Gentil C, Basset-Mens C, Manteaux S, Mottes C, Maillard E, Biard Y, Fantke P (2020) Coupling pesticide emission and toxicity characterization models for LCA: application to open-field tomato production in Martinique. J Clean Prod 277:124099CrossRef Gentil C, Basset-Mens C, Manteaux S, Mottes C, Maillard E, Biard Y, Fantke P (2020) Coupling pesticide emission and toxicity characterization models for LCA: application to open-field tomato production in Martinique. J Clean Prod 277:124099CrossRef
go back to reference Ghabbour EA, Davies G, Misiewicz T, Alami RA, Askounis EM, Cuozzo NP, Filice AJ, Haskell JM, Moy AK, Roach AC, Shade J (2017) National comparison of the total and sequestered organic matter contents of conventional and organic farm soils. Adv Agron 146:1–35CrossRef Ghabbour EA, Davies G, Misiewicz T, Alami RA, Askounis EM, Cuozzo NP, Filice AJ, Haskell JM, Moy AK, Roach AC, Shade J (2017) National comparison of the total and sequestered organic matter contents of conventional and organic farm soils. Adv Agron 146:1–35CrossRef
go back to reference Goedkoop M, Heijungs R, Huijbregts M, De Schryver AM, Struijs J, Van Zelm R (2009) ReCiPe. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators At the Midpoint and the Endpoint Level; Report I: Characterisation. Goedkoop M, Heijungs R, Huijbregts M, De Schryver AM, Struijs J, Van Zelm R (2009) ReCiPe. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators At the Midpoint and the Endpoint Level; Report I: Characterisation.
go back to reference Haag NL, Nägele HJ, Reiss K, Biertümpfel A, Oechsner H (2015) Methane formation potential of cup plant (Silphium perfoliatum). Biomass Bioenerg 75:126–133CrossRef Haag NL, Nägele HJ, Reiss K, Biertümpfel A, Oechsner H (2015) Methane formation potential of cup plant (Silphium perfoliatum). Biomass Bioenerg 75:126–133CrossRef
go back to reference Hakl J, Fuksa P, Konečná J, Pacek L, Tlustoš P (2014) Effect of applied cultivation technology and environmental conditions on lucerne farm yield in the Central Europe. Plant Soil Environ 60(10):475–480CrossRef Hakl J, Fuksa P, Konečná J, Pacek L, Tlustoš P (2014) Effect of applied cultivation technology and environmental conditions on lucerne farm yield in the Central Europe. Plant Soil Environ 60(10):475–480CrossRef
go back to reference Hasler K, Bröring S, Omta SWF, Olfs HW (2015) Life cycle assessment (LCA) of different fertilizer product types. Eur J Agron 69:41–51CrossRef Hasler K, Bröring S, Omta SWF, Olfs HW (2015) Life cycle assessment (LCA) of different fertilizer product types. Eur J Agron 69:41–51CrossRef
go back to reference Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6(5):452CrossRef Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6(5):452CrossRef
go back to reference IPCC (2006) IPCC guidelines for national greenhouse gas inventories. In Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) The national greenhouse gas inventories programme, IGES, Japan IPCC (2006) IPCC guidelines for national greenhouse gas inventories. In Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) The national greenhouse gas inventories programme, IGES, Japan
go back to reference IPCC (2007) Summary for Policymakers. In Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, Tignor, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 18 IPCC (2007) Summary for Policymakers. In Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, Tignor, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 18
go back to reference ISO 14040 (2006a) Environmental management–Life cycle assessment–Principles and framework. International Organization for Standardization: Geneva, Switzerland ISO 14040 (2006a) Environmental management–Life cycle assessment–Principles and framework. International Organization for Standardization: Geneva, Switzerland
go back to reference ISO 14044 (2006b) Environmental management–Life cycle assessment–Requirements and guidelines; International Organization for Standardization: Geneva, Switzerland ISO 14044 (2006b) Environmental management–Life cycle assessment–Requirements and guidelines; International Organization for Standardization: Geneva, Switzerland
go back to reference Kavka M, Beneš V, Brant V (2006) Normativy Zemědělských Výrobních Technologií. Praha, Czech Republic, Institute of Agriculture Economics and Information Kavka M, Beneš V, Brant V (2006) Normativy Zemědělských Výrobních Technologií. Praha, Czech Republic, Institute of Agriculture Economics and Information
go back to reference Klímek P, Meinlschmidt P, Wimmer R, Plinke B, Schirp A (2016) Using sunflower (Helianthus annuus L.), topinambour (Helianthus tuberosus L.) and cup-plant (Silphium perfoliatum L.) stalks as alternative raw materials for particleboards. Ind Crop Prod 92:157–164CrossRef Klímek P, Meinlschmidt P, Wimmer R, Plinke B, Schirp A (2016) Using sunflower (Helianthus annuus L.), topinambour (Helianthus tuberosus L.) and cup-plant (Silphium perfoliatum L.) stalks as alternative raw materials for particleboards. Ind Crop Prod 92:157–164CrossRef
go back to reference Koeppe MK, Hirata CM, Brown HM, Kenyon WH, O’Keefe DP, Lau SC, Zimmerman WT, Green JM (2000) Basis of selectivity of the herbicide rimsulfuron in maize. Pestic Biochem Physiol 66(3):170–181CrossRef Koeppe MK, Hirata CM, Brown HM, Kenyon WH, O’Keefe DP, Lau SC, Zimmerman WT, Green JM (2000) Basis of selectivity of the herbicide rimsulfuron in maize. Pestic Biochem Physiol 66(3):170–181CrossRef
go back to reference Kowalski R, Kędzia B (2007) Antibacterial activity of Silphium perfoliatum. Extracts Pharm Biol 45(6):494–500CrossRef Kowalski R, Kędzia B (2007) Antibacterial activity of Silphium perfoliatum. Extracts Pharm Biol 45(6):494–500CrossRef
go back to reference Kowalski R, Wolski T (2005) The chemical composition of essential oils of Silphium perfoliatum L. Flavour Fragrance J 20(3):306–310CrossRef Kowalski R, Wolski T (2005) The chemical composition of essential oils of Silphium perfoliatum L. Flavour Fragrance J 20(3):306–310CrossRef
go back to reference Lewandowski I, Scurlock JM, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25(4):335–361CrossRef Lewandowski I, Scurlock JM, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25(4):335–361CrossRef
go back to reference Majtkowski W, Piłat J, Szulc PM (2009) Prospects of cultivation and utilization of Silphium perfoliatum L. in Poland. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 251:283–291 Majtkowski W, Piłat J, Szulc PM (2009) Prospects of cultivation and utilization of Silphium perfoliatum L. in Poland. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 251:283–291
go back to reference Mast B, Lemmer A, Oechsner H, Reinhardt-Hanisch A, Claupein W, Graeff-Hönninger S (2014) Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind Crop Prod 58:194–203CrossRef Mast B, Lemmer A, Oechsner H, Reinhardt-Hanisch A, Claupein W, Graeff-Hönninger S (2014) Methane yield potential of novel perennial biogas crops influenced by harvest date. Ind Crop Prod 58:194–203CrossRef
go back to reference Matthews J, Beringen R, Huijbregts MAJ, Van der Mheen HJ, Odé B, Trindade L, Van Valkenburg JLCH, Velde G, Leuven RSEW (2015) Horizon scanning and environmental risk analyses of non-native biomass crops in the Netherlands. Radboud University Nijmegen, The Netherlands Matthews J, Beringen R, Huijbregts MAJ, Van der Mheen HJ, Odé B, Trindade L, Van Valkenburg JLCH, Velde G, Leuven RSEW (2015) Horizon scanning and environmental risk analyses of non-native biomass crops in the Netherlands. Radboud University Nijmegen, The Netherlands
go back to reference Moudrý J, Bernas J, Konvalina P, Ujj A, Manolov I, Stoeva A, Rembiałkowska E, Stalenga J, Toncea I, Fitiu A, Bucur D (2018) Agroecology development in Eastern Europe—cases in Czech Republic, Bulgaria, Hungary, Poland, Romania, and Slovakia. Sustainability 10(5):1311CrossRef Moudrý J, Bernas J, Konvalina P, Ujj A, Manolov I, Stoeva A, Rembiałkowska E, Stalenga J, Toncea I, Fitiu A, Bucur D (2018) Agroecology development in Eastern Europe—cases in Czech Republic, Bulgaria, Hungary, Poland, Romania, and Slovakia. Sustainability 10(5):1311CrossRef
go back to reference Nemecek T, Kägi T (2007) Life cycle inventories of Swiss and European agricultural production systems. Final report ecoinvent V2.0 No. 15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zürich and Dübendorf, Switzerland, retrieved from: www.econivent.ch Nemecek T, Kägi T (2007) Life cycle inventories of Swiss and European agricultural production systems. Final report ecoinvent V2.0 No. 15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zürich and Dübendorf, Switzerland, retrieved from: www.​econivent.​ch
go back to reference Neugschwandtner RW, Liebhard P, Kaul HP, Wagentristl H (2014) Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ 60(2):57–62CrossRef Neugschwandtner RW, Liebhard P, Kaul HP, Wagentristl H (2014) Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ 60(2):57–62CrossRef
go back to reference Novotný I, Žížala D, Kapička J, Beitlerová H, Mistr M, Kristenová H, Papaj V (2016) Adjusting the CPmax factor in the Universal Soil Loss Equation (USLE): areas in need of soil erosion protection in the Czech Republic. J Maps 12(sup1):58–62CrossRef Novotný I, Žížala D, Kapička J, Beitlerová H, Mistr M, Kristenová H, Papaj V (2016) Adjusting the CPmax factor in the Universal Soil Loss Equation (USLE): areas in need of soil erosion protection in the Czech Republic. J Maps 12(sup1):58–62CrossRef
go back to reference Pan G, Ouyang Z, Luo Q, Yu Q, Wang J (2011) Water use patterns of forage cultivars in the North China Plain. Int J Plant Prod 1:181–194 Pan G, Ouyang Z, Luo Q, Yu Q, Wang J (2011) Water use patterns of forage cultivars in the North China Plain. Int J Plant Prod 1:181–194
go back to reference Piłat J, Majtkowski W, Majtkowska G, Mikołajczak J, Góralska A (2007) The usefulness for ensiling of chosen plant forms of species of Silphium genus. J Cent Eur Agr 8(3):363–368 Piłat J, Majtkowski W, Majtkowska G, Mikołajczak J, Góralska A (2007) The usefulness for ensiling of chosen plant forms of species of Silphium genus. J Cent Eur Agr 8(3):363–368
go back to reference Poláková J, Janků J, Nocarová M (2018) Soil erosion, regulatory aspects and farmer responsibility: assessing cadastral data. Acta Agric Scand Sect B-Soil Plant Sci 68(8):709–718 Poláková J, Janků J, Nocarová M (2018) Soil erosion, regulatory aspects and farmer responsibility: assessing cadastral data. Acta Agric Scand Sect B-Soil Plant Sci 68(8):709–718
go back to reference Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1596CrossRef Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1596CrossRef
go back to reference Sarkar D, Kar SK, Chattopadhyay A, Rakshit A, Tripathi VK, Dubey PK, Abhilash PC (2020) Low input sustainable agriculture: a viable climate-smart option for boosting food production in a warming world. Ecol Indic 115:106412CrossRef Sarkar D, Kar SK, Chattopadhyay A, Rakshit A, Tripathi VK, Dubey PK, Abhilash PC (2020) Low input sustainable agriculture: a viable climate-smart option for boosting food production in a warming world. Ecol Indic 115:106412CrossRef
go back to reference Sinisterra-Solís NK, Sanjuán N, Estruch V, Clemente G (2020) Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: the influence of farm management and on-field emission modelling. J Environ Manage 262:110325CrossRef Sinisterra-Solís NK, Sanjuán N, Estruch V, Clemente G (2020) Assessing the environmental impact of Spanish vineyards in Utiel-Requena PDO: the influence of farm management and on-field emission modelling. J Environ Manage 262:110325CrossRef
go back to reference Sithole NJ, Magwaza LS, Mafongoya PL, Thibaud GR (2018) Long-term impact of no-till conservation agriculture on abundance and order diversity of soil macrofauna in continuous maize monocropping system. Acta Agric Scand Sect B-Soil Plant Sci 68(3):220–229 Sithole NJ, Magwaza LS, Mafongoya PL, Thibaud GR (2018) Long-term impact of no-till conservation agriculture on abundance and order diversity of soil macrofauna in continuous maize monocropping system. Acta Agric Scand Sect B-Soil Plant Sci 68(3):220–229
go back to reference Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B (2007) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B-Biol Sci 363(1492):789–813CrossRef Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B (2007) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B-Biol Sci 363(1492):789–813CrossRef
go back to reference Stanford G (1990) Silphium perfoliatum (cup-plant) as a new forage. Proceedings of the Twelfth North American Prairie Conference, Cedar Falls, IA 1:33–37 Stanford G (1990) Silphium perfoliatum (cup-plant) as a new forage. Proceedings of the Twelfth North American Prairie Conference, Cedar Falls, IA 1:33–37
go back to reference Țîței V (2014) Biological peculiarities of cup plant (Silphium perfoliatum L.) and utilization possibilities in the Republic of Moldova. Lucrări Științifice UASMV Seria Agronomie 57(1):289–293 Țîței V (2014) Biological peculiarities of cup plant (Silphium perfoliatum L.) and utilization possibilities in the Republic of Moldova. Lucrări Științifice UASMV Seria Agronomie 57(1):289–293
go back to reference Ţîţei V, Teleuţă A, Muntean A (2013) The perspective of cultivation and utilization of the species Silphium Perfoliatum L. and Helianthus Tuberosus L. in Moldova. Bulletin UASMV Seria Agriculture 70(1):160–166 Ţîţei V, Teleuţă A, Muntean A (2013) The perspective of cultivation and utilization of the species Silphium Perfoliatum L. and Helianthus Tuberosus L. in Moldova. Bulletin UASMV Seria Agriculture 70(1):160–166
go back to reference Usťak S (2012) Possibilities of cultivation of cup-plant Silphium perfoliatum L. for biogas production. Crop Research Institute, v.v.i., Prague Usťak S (2012) Possibilities of cultivation of cup-plant Silphium perfoliatum L. for biogas production. Crop Research Institute, v.v.i., Prague
go back to reference Usťak S, Munoz J (2018) Cup-plant potential for biogas production compared to reference maize in relation to the balance needs of nutrients and some microelements for their cultivation. J Environ Manage 228:260–266CrossRef Usťak S, Munoz J (2018) Cup-plant potential for biogas production compared to reference maize in relation to the balance needs of nutrients and some microelements for their cultivation. J Environ Manage 228:260–266CrossRef
go back to reference Vacek V, Repka R (1992) Concise results of the experiment with Silphium perfoliatum L. Czechoslovak Plant Genet Resour, annual report 1991 Vacek V, Repka R (1992) Concise results of the experiment with Silphium perfoliatum L. Czechoslovak Plant Genet Resour, annual report 1991
go back to reference Van Tassel DL, Albrecht KA, Bever JD, Boe AA, Brandvain Y, Crews TE, Gansberger M, Gerstberger P, González-Paleo L, Hulke BS, Kane NC (2017) Accelerating Silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci 57(3):1274–1284CrossRef Van Tassel DL, Albrecht KA, Bever JD, Boe AA, Brandvain Y, Crews TE, Gansberger M, Gerstberger P, González-Paleo L, Hulke BS, Kane NC (2017) Accelerating Silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci 57(3):1274–1284CrossRef
go back to reference Vašíčková J, Hvězdová M, Kosubová P, Hofman J (2019) Ecological risk assessment of pesticide residues in arable soils of the Czech Republic. Chemosphere 216:479–487CrossRef Vašíčková J, Hvězdová M, Kosubová P, Hofman J (2019) Ecological risk assessment of pesticide residues in arable soils of the Czech Republic. Chemosphere 216:479–487CrossRef
go back to reference Vinyes E, Gasol CM, Asin L, Alegre S, Muñoz P (2015) Life cycle assessment of multiyear peach production. J Clean Prod 104:68–79CrossRef Vinyes E, Gasol CM, Asin L, Alegre S, Muñoz P (2015) Life cycle assessment of multiyear peach production. J Clean Prod 104:68–79CrossRef
go back to reference Vogel E, Deumlich D, Kaupenjohann M (2016) Bioenergy maize and soil erosion—risk assessment and erosion control concepts. Geoderma 261:80–92CrossRef Vogel E, Deumlich D, Kaupenjohann M (2016) Bioenergy maize and soil erosion—risk assessment and erosion control concepts. Geoderma 261:80–92CrossRef
go back to reference von Cossel M, Amarysti C, Wilhelm H, Priya N, Winkler B, Hoerner L (2020) The replacement of maize (Zea mays L.) by cup plant (Silphium perfoliatum L.) as biogas substrate and its implications for the energy and material flows of a large biogas plant. Biofuel Bioprod Biorefin 14(2):152–179CrossRef von Cossel M, Amarysti C, Wilhelm H, Priya N, Winkler B, Hoerner L (2020) The replacement of maize (Zea mays L.) by cup plant (Silphium perfoliatum L.) as biogas substrate and its implications for the energy and material flows of a large biogas plant. Biofuel Bioprod Biorefin 14(2):152–179CrossRef
go back to reference Webb J, Sørensen P, Velthof G, Amon B, Pinto M, Rodhe L, Salomon E, Hutchings N, Burczyk P, Reid J (2013) An assessment of the variation of manure nitrogen efficiency throughout Europe and an appraisal of means to increase manure-N efficiency. Adv Agron 119:371–442CrossRef Webb J, Sørensen P, Velthof G, Amon B, Pinto M, Rodhe L, Salomon E, Hutchings N, Burczyk P, Reid J (2013) An assessment of the variation of manure nitrogen efficiency throughout Europe and an appraisal of means to increase manure-N efficiency. Adv Agron 119:371–442CrossRef
go back to reference World Health Organization (WHO) (2011) ISBN 978 92 4 154815 1. Guidel Drink Water Qual 398 World Health Organization (WHO) (2011) ISBN 978 92 4 154815 1. Guidel Drink Water Qual 398
go back to reference Wrobel M, Frączek J, Francik S, Slipek Z, Mudryk K (2013) Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. Eng Rural Dev, Jelgava, Latvia 1:653–657 Wrobel M, Frączek J, Francik S, Slipek Z, Mudryk K (2013) Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. Eng Rural Dev, Jelgava, Latvia 1:653–657
Metadata
Title
Cup plant, an alternative to conventional silage from a LCA perspective
Authors
Jaroslav Bernas
Tereza Bernasová
Pedro Gerstberger
Jan Moudrý
Petr Konvalina
Jan Moudrý Jr.
Publication date
15-01-2021
Publisher
Springer Berlin Heidelberg
Published in
The International Journal of Life Cycle Assessment / Issue 2/2021
Print ISSN: 0948-3349
Electronic ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-020-01858-x

Other articles of this Issue 2/2021

The International Journal of Life Cycle Assessment 2/2021 Go to the issue