Skip to main content
Top

2020 | OriginalPaper | Chapter

Current Efficiency for Direct Production of an Aluminium–Titanium Alloy by Electrolysis in a Laboratory Cell

Authors : Omar Awayssa, Rauan Meirbekova, Gudrun Saevarsdottir, Gudjon Atli Audunsson, Geir Martin Haarberg

Published in: Light Metals 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrochemical production of an aluminium-titanium alloy in situ during aluminium reduction in fluoride-based melts was investigated. Experiments were carried out in a laboratory cell at 0.9 A/cm2 and temperatures 960 and 970 °C. TiO2 was added as a raw material along with alumina. Bath samples were collected regularly and analyzed with ICP-MS to estimate the co-deposition rate of titanium during the experiment. Apparent current efficiencies were recorded, and analysis of deposit was carried out by ICP-MS to complete the material balance and calculate the real current efficiencies. The content of titanium was varied up to 1 wt% and alumina concentration in the bath was below saturation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou H, Zhan Z (1999) Research progress of TiAl intermetallic compounds. Journal of Guangxi University. 12:262–264. Zhou H, Zhan Z (1999) Research progress of TiAl intermetallic compounds. Journal of Guangxi University. 12:262–264.
2.
go back to reference Liu A, Xie K, Li L, Shi Z, Hu X, Xu J, Gao B, Wang Z (2015) Preparation of Al-Ti Master Alloys by Aluminothermic Reduction of TiO2 in Cryolite Melts at 960 °C. In: Jiang T. et al. (eds) 6th International Symposium on High-Temperature Metallurgical Processing. The Minerals, Metals & Materials Society, Florida; Springer Cham, Switzerland, p 239–246. Liu A, Xie K, Li L, Shi Z, Hu X, Xu J, Gao B, Wang Z (2015) Preparation of Al-Ti Master Alloys by Aluminothermic Reduction of TiO2 in Cryolite Melts at 960 °C. In: Jiang T. et al. (eds) 6th International Symposium on High-Temperature Metallurgical Processing. The Minerals, Metals & Materials Society, Florida; Springer Cham, Switzerland, p 239–246.
3.
go back to reference Zhuxian Q, Zhang M, Yue Y, Che Z, Grjotheim K, Kvande H (1988) Formation of aluminium titanium alloys by electrolysis and by thermal reduction of titania in cryolite-aluminia melts. Aluminium 64(6):606–609. Zhuxian Q, Zhang M, Yue Y, Che Z, Grjotheim K, Kvande H (1988) Formation of aluminium titanium alloys by electrolysis and by thermal reduction of titania in cryolite-aluminia melts. Aluminium 64(6):606–609.
4.
go back to reference Zhuxian Q, Yaxin Y, Mingjie Z, Grjotheim K, Kvande H (1988) Preparation of Al-Ti-B master alloys by thermal reduction and electrolysis of B2O3 and TiO2 in cryolite-aluminia melts. Aluminium 64(12): 1254–1257. Zhuxian Q, Yaxin Y, Mingjie Z, Grjotheim K, Kvande H (1988) Preparation of Al-Ti-B master alloys by thermal reduction and electrolysis of B2O3 and TiO2 in cryolite-aluminia melts. Aluminium 64(12): 1254–1257.
5.
go back to reference Zheleznov A (1935) Procudtion of Al-Ti alloys in aluminium baths. Light Metals (in Russian) 1: 13 Zheleznov A (1935) Procudtion of Al-Ti alloys in aluminium baths. Light Metals (in Russian) 1: 13
6.
go back to reference Grjotheim, K, Kvande, H (ed) (1993) Introduction to Aluminium Electrolysis: understanding the Hall-Héroult process. Aluminium-Verlag, Düsseldorf. Grjotheim, K, Kvande, H (ed) (1993) Introduction to Aluminium Electrolysis: understanding the Hall-Héroult process. Aluminium-Verlag, Düsseldorf.
7.
go back to reference Raj S, Skylass-Kazacos M (1992) Eelectrochemical Studies of the effect of TiO2, and B2O4 additions on the aluminium deposition reaction in the molten cryolte bath. Electrochimical Acta 37(10): 1787–1796 Raj S, Skylass-Kazacos M (1992) Eelectrochemical Studies of the effect of TiO2, and B2O4 additions on the aluminium deposition reaction in the molten cryolte bath. Electrochimical Acta 37(10): 1787–1796
8.
go back to reference Haarberg GM (2017) Electrochemical Behaviour of Dissolved Titanium Oxides during Aluminium Deposition from Molten Fluoride Electrolytes. Materials Transactions 58(3): 406–409. Haarberg GM (2017) Electrochemical Behaviour of Dissolved Titanium Oxides during Aluminium Deposition from Molten Fluoride Electrolytes. Materials Transactions 58(3): 406–409.
9.
go back to reference Makyta M, Matiašovský K, Taranenko V (1989) Mechanism of the cathode process in the electrochemical synthesis of TiB2 in molten salts. The synthesis in an all-fluoride electrolyte. Electrochimical Acta 34(6):861–866. Makyta M, Matiašovský K, Taranenko V (1989) Mechanism of the cathode process in the electrochemical synthesis of TiB2 in molten salts. The synthesis in an all-fluoride electrolyte. Electrochimical Acta 34(6):861–866.
10.
go back to reference Yi H, Petric A, Moore J (1992) Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds. Journal of Materials Science 27(24): 6797–6806. Yi H, Petric A, Moore J (1992) Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds. Journal of Materials Science 27(24): 6797–6806.
11.
go back to reference Solli P, Eggen T, Rolseth S, Skybakmoen E (1996) Design and performance of a laboratory cell for determination of current efficiency in the electrowinning of aluminium. Journal of Applied Electrochemistry 26(10): 1019–1025. Solli P, Eggen T, Rolseth S, Skybakmoen E (1996) Design and performance of a laboratory cell for determination of current efficiency in the electrowinning of aluminium. Journal of Applied Electrochemistry 26(10): 1019–1025.
12.
go back to reference Meirbekova, R et al. (2014) Effect of Current Density and Phosphorus Species on Current Efficiency in Aluminum Electrolysis at High Current Densities. Paper presented at the 143rd TMS Annual Meeting, San Diego, California, 16–20 February 2014 Meirbekova, R et al. (2014) Effect of Current Density and Phosphorus Species on Current Efficiency in Aluminum Electrolysis at High Current Densities. Paper presented at the 143rd TMS Annual Meeting, San Diego, California, 16–20 February 2014
13.
14.
go back to reference Solheim Å, Rolseth S, Skybakmoen E, Støen L, Sterten Å, Støre T (1996). Metallurgical and Materials Transactions B 27B:739–744. Solheim Å, Rolseth S, Skybakmoen E, Støen L, Sterten Å, Støre T (1996). Metallurgical and Materials Transactions B 27B:739–744.
Metadata
Title
Current Efficiency for Direct Production of an Aluminium–Titanium Alloy by Electrolysis in a Laboratory Cell
Authors
Omar Awayssa
Rauan Meirbekova
Gudrun Saevarsdottir
Gudjon Atli Audunsson
Geir Martin Haarberg
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-36408-3_63

Premium Partners