Skip to main content
Top

2014 | OriginalPaper | Chapter

2. Current Techniques for Fabricating Microfluidic and Optofluidic Devices

Authors : Koji Sugioka, Ya Cheng

Published in: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A wide variety of techniques have been developed for fabricating microfluidic and optofluidic components and devices using polymer, glass, and silicon substrates. This chapter gives a brief overview of these techniques, which can be categorized into two classes: parallel processing techniques based on photolithography and serial processing techniques based on direct writing. Some representative examples of these two categories are discussed, including photolithography on glass, soft lithography on poly(dimethylsiloxane) (PDMS), and femtosecond-laser-induced two-photon polymerization. The main advantages and disadvantages of parallel and serial processing are compared. Polymers are currently the most commonly used material for microfluidic and optofluidic applications because fabrication in polymers is easy, rapid, and cost effective. In contrast, glass offers better chemical durability and optical performance. Femtosecond laser direct writing enables microfluidic and integrated optofluidic structures with complex three-dimensional geometries to be directly embedded in glass, eliminating the need to use multistep procedures such as stacking and bonding.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices ED-26:1880–1886 Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices ED-26:1880–1886
2.
go back to reference Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor Actuat B1:244–248CrossRef Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor Actuat B1:244–248CrossRef
3.
go back to reference Harrison DJ, Fluri K, Seiler K et al (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897CrossRef Harrison DJ, Fluri K, Seiler K et al (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897CrossRef
4.
go back to reference Grétillat MA, Paoletti F, Thiébaud P et al (1997) A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets. Sensor Actuat A 60:219–222CrossRef Grétillat MA, Paoletti F, Thiébaud P et al (1997) A new fabrication method for borosilicate glass capillary tubes with lateral inlets and outlets. Sensor Actuat A 60:219–222CrossRef
5.
go back to reference Dodge A, Fluri K, Verpoorte E et al (2001) Electrokinetically driven microfluidic chips with surface modified chambers for heterogeneous immunoassays. Anal Chem 73:3400–3409CrossRef Dodge A, Fluri K, Verpoorte E et al (2001) Electrokinetically driven microfluidic chips with surface modified chambers for heterogeneous immunoassays. Anal Chem 73:3400–3409CrossRef
6.
go back to reference Verpoorte E, Rooij NFD (2003) Microfluidics meets MEMS. Proc IEEE 91:930–950CrossRef Verpoorte E, Rooij NFD (2003) Microfluidics meets MEMS. Proc IEEE 91:930–950CrossRef
7.
go back to reference Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRef Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373CrossRef
8.
go back to reference Zhao XM, Xia YN, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7:1069–1074CrossRef Zhao XM, Xia YN, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7:1069–1074CrossRef
9.
go back to reference Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef
10.
go back to reference Unger MA, Chou HP, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRef Unger MA, Chou HP, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRef
11.
go back to reference Kim J, Xu XF (2003) Excimer laser fabrication of polymer microfluidic devices. J Laser Appl 15:255–260CrossRef Kim J, Xu XF (2003) Excimer laser fabrication of polymer microfluidic devices. J Laser Appl 15:255–260CrossRef
12.
go back to reference Becker H, Heim U (2000) Hot embossing as a method for the fabrication of polymer high aspect. Sensor Actuat A 83:130–135CrossRef Becker H, Heim U (2000) Hot embossing as a method for the fabrication of polymer high aspect. Sensor Actuat A 83:130–135CrossRef
13.
go back to reference Choi JW, Kim S, Trichur R et al (2001) A plastic micro injection molding technique using replaceable mold-disks for disposable microfluidic systems and biochips. In: Proceedings of the 5th international conference on micro total analysis systems (μTAS), pp 411–412 Choi JW, Kim S, Trichur R et al (2001) A plastic micro injection molding technique using replaceable mold-disks for disposable microfluidic systems and biochips. In: Proceedings of the 5th international conference on micro total analysis systems (μTAS), pp 411–412
14.
go back to reference Kan JA, Bettiol AA, Watt F (2003) Three-dimensional nanolithography using proton beam writing. Appl Phys Lett 83:1629–1631CrossRef Kan JA, Bettiol AA, Watt F (2003) Three-dimensional nanolithography using proton beam writing. Appl Phys Lett 83:1629–1631CrossRef
15.
go back to reference Mali P, Sarkar A, Lal R (2006) Facile fabrication of microfluidic systems using electron beam lithography. Lab Chip 6:310–315CrossRef Mali P, Sarkar A, Lal R (2006) Facile fabrication of microfluidic systems using electron beam lithography. Lab Chip 6:310–315CrossRef
16.
go back to reference Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRef Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRef
17.
go back to reference Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRef Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRef
18.
go back to reference Bellouard Y, Said A, Dugan M et al (2004) Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12:2120–2129CrossRef Bellouard Y, Said A, Dugan M et al (2004) Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12:2120–2129CrossRef
19.
go back to reference Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463 Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463
20.
go back to reference Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass. Lab Chip 12:1527–1532CrossRef Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass. Lab Chip 12:1527–1532CrossRef
21.
go back to reference Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef
22.
go back to reference Bartholomeusz DA, Boutte RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14:1364–1374CrossRef Bartholomeusz DA, Boutte RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14:1364–1374CrossRef
23.
go back to reference Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(13):011301 Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6(13):011301
24.
go back to reference Delft KM, Eijkel JCT, Mijatovic D et al (2007) Micromachined Fabry–Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics. Nano Lett 7:345–350CrossRef Delft KM, Eijkel JCT, Mijatovic D et al (2007) Micromachined Fabry–Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics. Nano Lett 7:345–350CrossRef
25.
go back to reference Durand NFY, Renaud P (2009) Label-free determination of protein–surface interaction kinetics by ionic conductance inside a nanochannel. Lab Chip 9:319–324CrossRef Durand NFY, Renaud P (2009) Label-free determination of protein–surface interaction kinetics by ionic conductance inside a nanochannel. Lab Chip 9:319–324CrossRef
26.
go back to reference Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(4):067001 Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(4):067001
27.
go back to reference Huang Z, Sanders JC, Dunsmor C et al (2001) A method for UV-bonding in the fabrication of glass electrophoretic microchips. Electrophoresis 22:3924–3929CrossRef Huang Z, Sanders JC, Dunsmor C et al (2001) A method for UV-bonding in the fabrication of glass electrophoretic microchips. Electrophoresis 22:3924–3929CrossRef
28.
go back to reference He B, Tait N, Regnier FE et al (1998) Fabrication of nanocolumns for liquid chromatography. Anal Chem 70:3790–3797CrossRef He B, Tait N, Regnier FE et al (1998) Fabrication of nanocolumns for liquid chromatography. Anal Chem 70:3790–3797CrossRef
29.
go back to reference Li X, Abe T, Esashi M et al (2001) Deep reactive ion etching of Pyrex glass using SF plasma. Sensor Actuat A 87:139–145CrossRef Li X, Abe T, Esashi M et al (2001) Deep reactive ion etching of Pyrex glass using SF plasma. Sensor Actuat A 87:139–145CrossRef
30.
go back to reference Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRef Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111CrossRef
31.
go back to reference McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef
32.
go back to reference Anderson JR, Chiu DT, Jackman RJ et al (2000) Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping. Anal Chem 72:3158–3164CrossRef Anderson JR, Chiu DT, Jackman RJ et al (2000) Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping. Anal Chem 72:3158–3164CrossRef
33.
go back to reference Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRef Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRef
34.
go back to reference Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRef Camou S, Fujita H, Fujii T (2003) PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip 3:40–45CrossRef
35.
go back to reference Wang Z, El-Ali J, Engelund M et al (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377CrossRef Wang Z, El-Ali J, Engelund M et al (2004) Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4:372–377CrossRef
36.
go back to reference Erickson D, Rockwood T, Emery T et al (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61CrossRef Erickson D, Rockwood T, Emery T et al (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61CrossRef
37.
go back to reference Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134CrossRef Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134CrossRef
38.
go back to reference Watanabe M, Sun HB, Juodkazis S et al (1998) Three-Dimensional Optical Data Storage in Vitreous Silica. Jpn J Appl Phys Part 2(37):L1527–L1530CrossRef Watanabe M, Sun HB, Juodkazis S et al (1998) Three-Dimensional Optical Data Storage in Vitreous Silica. Jpn J Appl Phys Part 2(37):L1527–L1530CrossRef
39.
go back to reference Kawata S, Sun HB, Tanaka T et al (2001) Finer features for functional micro-devices. Nature 412:697–698CrossRef Kawata S, Sun HB, Tanaka T et al (2001) Finer features for functional micro-devices. Nature 412:697–698CrossRef
40.
go back to reference Wang J, He Y, Xia H et al (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–1996CrossRef Wang J, He Y, Xia H et al (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–1996CrossRef
41.
go back to reference Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89(3):144101 Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89(3):144101
42.
go back to reference Maruo S, Takaura A, Saito Y (2009) Optically driven micropump with a twin spiral microrotor. Opt Express 17:18525–18532CrossRef Maruo S, Takaura A, Saito Y (2009) Optically driven micropump with a twin spiral microrotor. Opt Express 17:18525–18532CrossRef
43.
go back to reference Wu J, Day D, Gu M (2008)A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Appl Phys Lett 92(3):071108 Wu J, Day D, Gu M (2008)A microfluidic refractive index sensor based on an integrated three-dimensional photonic crystal. Appl Phys Lett 92(3):071108
Metadata
Title
Current Techniques for Fabricating Microfluidic and Optofluidic Devices
Authors
Koji Sugioka
Ya Cheng
Copyright Year
2014
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5541-6_2