Skip to main content
Top
Published in: World Wide Web 2/2022

24-06-2021

Cyclic label propagation for graph semi-supervised learning

Authors: Zhao Li, Yixin Liu, Zhen Zhang, Shirui Pan, Jianliang Gao, Jiajun Bu

Published in: World Wide Web | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graph neural networks (GNNs) have emerged as effective approaches for graph analysis, especially in the scenario of semi-supervised learning. Despite its success, GNN often suffers from over-smoothing and over-fitting problems, which affects its performance on node classification tasks. We analyze that an alternative method, the label propagation algorithm (LPA), avoids the aforementioned problems thus it is a promising choice for graph semi-supervised learning. Nevertheless, the intrinsic limitations of LPA on feature exploitation and relation modeling make propagating labels become less effective. To overcome these limitations, we introduce a novel framework for graph semi-supervised learning termed as Cyclic Label Propagation (CycProp for abbreviation), which integrates GNNs into the process of label propagation in a cyclic and mutually reinforcing manner to exploit the advantages of both GNNs and LPA. In particular, our proposed CycProp updates the node embeddings learned by GNN module with the augmented information by label propagation, while fine-tunes the weighted graph of label propagation with the help of node embedding in turn. After the model converges, reliably predicted labels and informative node embeddings are obtained with the LPA and GNN modules respectively. Extensive experiments on various real-world datasets are conducted, and the experimental results empirically demonstrate that the proposed CycProp model can achieve relatively significant gains over the state-of-the-art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR 7 (Nov), 2399–2434 (2006)MathSciNetMATH Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR 7 (Nov), 2399–2434 (2006)MathSciNetMATH
2.
go back to reference Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: COMPSTAT, pp 177–186. Springer (2010) Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: COMPSTAT, pp 177–186. Springer (2010)
3.
go back to reference Bui, T.D., Ravi, S., Ramavajjala, V.: Neural graph learning: Training neural networks using graphs. In: WSDM, pp 64–71. ACM (2018) Bui, T.D., Ravi, S., Ramavajjala, V.: Neural graph learning: Training neural networks using graphs. In: WSDM, pp 64–71. ACM (2018)
4.
go back to reference Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: AAAI, pp 3438–3445 (2020) Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: AAAI, pp 3438–3445 (2020)
5.
go back to reference Duran, A.G., Niepert, M.: Learning graph representations with embedding propagation. In: NIPS, pp 5119–5130 (2017) Duran, A.G., Niepert, M.: Learning graph representations with embedding propagation. In: NIPS, pp 5119–5130 (2017)
6.
go back to reference Gilmer, J., Schoenholz, S.S., Riley, P. F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML (2017) Gilmer, J., Schoenholz, S.S., Riley, P. F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML (2017)
7.
go back to reference Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: SIGKDD, pp 855–864. ACM (2016) Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: SIGKDD, pp 855–864. ACM (2016)
8.
go back to reference Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp 1024–1034 (2017) Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp 1024–1034 (2017)
9.
go back to reference Huang, X., Li, J., Hu, X.: Accelerated attributed network embedding. In: SDM, pp 633–641. SIAM (2017) Huang, X., Li, J., Hu, X.: Accelerated attributed network embedding. In: SDM, pp 633–641. SIAM (2017)
10.
go back to reference Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 5070–5079. Computer Vision Foundation / IEEE. https://doi.org/10.1109/CVPR.2019.00521 (2019) Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Label propagation for deep semi-supervised learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 5070–5079. Computer Vision Foundation / IEEE. https://​doi.​org/​10.​1109/​CVPR.​2019.​00521 (2019)
11.
go back to reference Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for classifying in heterogeneous social networks. In: WSDM, pp 373–382. ACM (2014) Jacob, Y., Denoyer, L., Gallinari, P.: Learning latent representations of nodes for classifying in heterogeneous social networks. In: WSDM, pp 373–382. ACM (2014)
12.
go back to reference Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
13.
go back to reference Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to graph classification. In: NIPS, pp 729–736 (2005) Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to graph classification. In: NIPS, pp 729–736 (2005)
14.
go back to reference Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NIPS, pp 1189–1197 (2010) Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NIPS, pp 1189–1197 (2010)
15.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRef
16.
go back to reference Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: WWW, pp 631–640. ACM (2010) Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: WWW, pp 631–640. ACM (2010)
17.
go back to reference Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. In: NIPS, pp 379–387. MIT Press (2015) Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. In: NIPS, pp 379–387. MIT Press (2015)
18.
go back to reference Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018) Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
19.
go back to reference Liang, J., Jacobs, P., Sun, J., Parthasarathy, S.: Semi-supervised embedding in attributed networks with outliers. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp 153–161. SIAM (2018) Liang, J., Jacobs, P., Sun, J., Parthasarathy, S.: Semi-supervised embedding in attributed networks with outliers. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp 153–161. SIAM (2018)
20.
go back to reference Liao, L., He, X., Zhang, H., Chua, T.S.: Attributed social network embedding. In: arXiv:1705.04969 (2017) Liao, L., He, X., Zhang, H., Chua, T.S.: Attributed social network embedding. In: arXiv:1705.​04969 (2017)
21.
go back to reference Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)CrossRef Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)CrossRef
22.
go back to reference Liu, L., Zhou, T., Long, G., Jiang, J., Dong, X., Zhang, C.: Isometric propagation network for generalized zero-shot learning. In: International Conference on Learning Representations (ICLR) (2021) Liu, L., Zhou, T., Long, G., Jiang, J., Dong, X., Zhang, C.: Isometric propagation network for generalized zero-shot learning. In: International Conference on Learning Representations (ICLR) (2021)
23.
go back to reference Liu, L., Zhou, T., Long, G., Jiang, J., Zhang, C.: Attribute propagation network for graph zero-shot learning. In: AAAI Conference on Artificial Intelligence (AAAI) (2020) Liu, L., Zhou, T., Long, G., Jiang, J., Zhang, C.: Attribute propagation network for graph zero-shot learning. In: AAAI Conference on Artificial Intelligence (AAAI) (2020)
24.
go back to reference Lu, Q., Getoor, L.: Link-based classification. In: ICML, pp 496–503 (2003) Lu, Q., Getoor, L.: Link-based classification. In: ICML, pp 496–503 (2003)
25.
go back to reference Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013) Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)
26.
go back to reference Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp 3111–3119 (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp 3111–3119 (2013)
27.
go back to reference Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI, pp 1895–1901 (2016) Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation. In: IJCAI, pp 1895–1901 (2016)
28.
go back to reference Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimization 1(3), 127–239 (2014)CrossRef Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimization 1(3), 127–239 (2014)CrossRef
29.
go back to reference Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: SIGKDD, pp 701–710. ACM (2014) Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: SIGKDD, pp 701–710. ACM (2014)
30.
go back to reference Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations (2019) Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: Towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations (2019)
31.
go back to reference Shi, W., Rajkumar, R.: Point-gnn: Graph neural network for 3d object detection in a point cloud. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1711–1719 (2020) Shi, W., Rajkumar, R.: Point-gnn: Graph neural network for 3d object detection in a point cloud. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1711–1719 (2020)
32.
go back to reference Tang, J., Qu, M., Mei, Q.: Pte: Predictive text embedding through large-scale heterogeneous text networks. In: SIGKDD, pp 1165–1174. ACM (2015) Tang, J., Qu, M., Mei, Q.: Pte: Predictive text embedding through large-scale heterogeneous text networks. In: SIGKDD, pp 1165–1174. ACM (2015)
33.
go back to reference Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW, pp 1067–1077. ACM (2015) Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW, pp 1067–1077. ACM (2015)
34.
go back to reference Tang, L., Liu, H.: Relational learning via latent social dimensions. In: SIGKDD, pp 817–826. ACM (2009) Tang, L., Liu, H.: Relational learning via latent social dimensions. In: SIGKDD, pp 817–826. ACM (2009)
35.
go back to reference Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018) Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
36.
go back to reference Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: International Conference on Learning Representations (2019) Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: International Conference on Learning Representations (2019)
37.
go back to reference Wang, B., Tu, Z., Tsotsos, J.K.: Dynamic label propagation for semi-supervised multi-class multi-label classification. In: ICCV, pp. 425–432 (2013) Wang, B., Tu, Z., Tsotsos, J.K.: Dynamic label propagation for semi-supervised multi-class multi-label classification. In: ICCV, pp. 425–432 (2013)
38.
go back to reference Wang, F., Zhang, C.: Label propagation through linear neighborhoods. In: ICML, pp 985–992. ACM (2006) Wang, F., Zhang, C.: Label propagation through linear neighborhoods. In: ICML, pp 985–992. ACM (2006)
39.
go back to reference Wang, H., Leskovec, J.: Unifying graph convolutional neural networks and label propagation. arXiv:2002.06755 (2020) Wang, H., Leskovec, J.: Unifying graph convolutional neural networks and label propagation. arXiv:2002.​06755 (2020)
40.
go back to reference Wang, W., Carreira-Perpinán, M.A.: Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application. In: arXiv:1309.1541 (2013) Wang, W., Carreira-Perpinán, M.A.: Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application. In: arXiv:1309.​1541 (2013)
41.
go back to reference Wu, F., Souza, Jr, A.H., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying graph convolutional networks. In: ICML (2019) Wu, F., Souza, Jr, A.H., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying graph convolutional networks. In: ICML (2019)
42.
go back to reference Wu, L., Wang, D., Feng, S., Zhang, Y., Yu, G.: Mdal: Multi-task dual attention lstm model for semi-supervised network embedding. In: International Conference on Database Systems for Advanced Applications, pp 468–483. Springer (2019) Wu, L., Wang, D., Feng, S., Zhang, Y., Yu, G.: Mdal: Multi-task dual attention lstm model for semi-supervised network embedding. In: International Conference on Database Systems for Advanced Applications, pp 468–483. Springer (2019)
43.
go back to reference Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems (2020) Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems (2020)
44.
go back to reference Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020) Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)
45.
go back to reference Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?. In: International Conference on Learning Representations (2019) Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?. In: International Conference on Learning Representations (2019)
46.
go back to reference Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. In: ICML, pp. 40–48. JMLR.org (2016) Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. In: ICML, pp. 40–48. JMLR.​org (2016)
47.
go back to reference Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: Generating explanations for graph neural networks. In: Advances in neural information processing systems, pp. 9244–9255 (2019) Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: Generating explanations for graph neural networks. In: Advances in neural information processing systems, pp. 9244–9255 (2019)
48.
go back to reference Zhou, D., Bousquet, O., Lal, T. N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS, pp. 321–328 (2004) Zhou, D., Bousquet, O., Lal, T. N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS, pp. 321–328 (2004)
49.
go back to reference Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML, pp. 912–919 (2003) Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML, pp. 912–919 (2003)
Metadata
Title
Cyclic label propagation for graph semi-supervised learning
Authors
Zhao Li
Yixin Liu
Zhen Zhang
Shirui Pan
Jianliang Gao
Jiajun Bu
Publication date
24-06-2021
Publisher
Springer US
Published in
World Wide Web / Issue 2/2022
Print ISSN: 1386-145X
Electronic ISSN: 1573-1413
DOI
https://doi.org/10.1007/s11280-021-00906-2

Other articles of this Issue 2/2022

World Wide Web 2/2022 Go to the issue

Premium Partner