Skip to main content
Top

2010 | OriginalPaper | Chapter

8. Czochralski Silicon Single Crystals for Semiconductor and Solar Cell Applications

Author : Koichi Kakimoto

Published in: Springer Handbook of Crystal Growth

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews growth and characterization of Czochralski silicon single crystals for semiconductor and solar cell applications. Magnetic-field-applied Czochralski growth systems and unidirectional solidification systems are the focus for large-scale integrated (LSI) circuits and solar applications, for which control of melt flow is a key issue to realize high-quality crystals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
8.1.
go back to reference M. Itsumi, H. Akiya, T. Ueki: The composition of octahedron structures that act as an origin of defects in thermal SiO_2 on Chochralski silicon, J. Appl. Phys. 78, 5984–5988 (1995)ADSCrossRef M. Itsumi, H. Akiya, T. Ueki: The composition of octahedron structures that act as an origin of defects in thermal SiO_2 on Chochralski silicon, J. Appl. Phys. 78, 5984–5988 (1995)ADSCrossRef
8.2.
go back to reference K. Koai, A. Seidel, H.-J. Leister, G. Müller, A. Koehler: Modeling of thermal fluid-flow in the liquid encapsulated Czochralski process and comparison with experiments, J. Cryst. Growth 137, 41–47 (1994)ADSCrossRef K. Koai, A. Seidel, H.-J. Leister, G. Müller, A. Koehler: Modeling of thermal fluid-flow in the liquid encapsulated Czochralski process and comparison with experiments, J. Cryst. Growth 137, 41–47 (1994)ADSCrossRef
8.3.
go back to reference H.-J. Leister, M. Peric: Numerical-simulation of a 3-D Czochralski flow by a finite volume multi-grid-algorithm, J. Cryst. Growth 123, 567–574 (1992)ADSCrossRef H.-J. Leister, M. Peric: Numerical-simulation of a 3-D Czochralski flow by a finite volume multi-grid-algorithm, J. Cryst. Growth 123, 567–574 (1992)ADSCrossRef
8.4.
go back to reference H. Yamagishi, M. Kuramoto, Y. Shiraishi: CZ crystal growth development in super silicon crystal project, Solid State Phenom. 57-8, 37–39 (1997)CrossRef H. Yamagishi, M. Kuramoto, Y. Shiraishi: CZ crystal growth development in super silicon crystal project, Solid State Phenom. 57-8, 37–39 (1997)CrossRef
8.5.
go back to reference Y.C. Won, K. Kakimoto, H. Ozoe: Transient three-dimensional flow characteristics of Si melt in a Czochralski configuration under a cusp-shaped magnetic field, Numer. Heat Transf. A36, 551–561 (1999)ADS Y.C. Won, K. Kakimoto, H. Ozoe: Transient three-dimensional flow characteristics of Si melt in a Czochralski configuration under a cusp-shaped magnetic field, Numer. Heat Transf. A36, 551–561 (1999)ADS
8.6.
go back to reference K.-W. Yi, M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Change in velocity in silicon melt of the Czochralski (CZ) process in a vertical magnetic field, Jpn. J. Appl. Phys. 33, L487–L490 (1994)ADSCrossRef K.-W. Yi, M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Change in velocity in silicon melt of the Czochralski (CZ) process in a vertical magnetic field, Jpn. J. Appl. Phys. 33, L487–L490 (1994)ADSCrossRef
8.7.
go back to reference M.G. Williams, J.S. Walker, W.E. Langlois: Melt motion in a Czochralski puller with a weak transverse magnetic-field, J. Cryst. Growth 100, 233–253 (1990)ADSCrossRef M.G. Williams, J.S. Walker, W.E. Langlois: Melt motion in a Czochralski puller with a weak transverse magnetic-field, J. Cryst. Growth 100, 233–253 (1990)ADSCrossRef
8.8.
go back to reference A.E. Organ, N. Riley: Oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 82, 465–476 (1987)ADSCrossRef A.E. Organ, N. Riley: Oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 82, 465–476 (1987)ADSCrossRef
8.9.
go back to reference J.S. Walker, M.G. Williams: Centrifugal pumping during Czochralski silicon growth with a strong transverse magnetic-field, J. Cryst. Growth 137, 32–36 (1994)ADSCrossRef J.S. Walker, M.G. Williams: Centrifugal pumping during Czochralski silicon growth with a strong transverse magnetic-field, J. Cryst. Growth 137, 32–36 (1994)ADSCrossRef
8.10.
go back to reference J. Baumgartl, M. Gewald, R. Rupp, J. Stierlen, G. Müller: Studies of buoyancy driven convection in a vertical cylinder with parabolic temperature profile, Proc. 7th Eur. Symp. Mater. Fluid Sci. Microgravity, Oxford (1989) pp. 10–15 J. Baumgartl, M. Gewald, R. Rupp, J. Stierlen, G. Müller: Studies of buoyancy driven convection in a vertical cylinder with parabolic temperature profile, Proc. 7th Eur. Symp. Mater. Fluid Sci. Microgravity, Oxford (1989) pp. 10–15
8.11.
go back to reference L.N. Hjellming, J.S. Walker: Melt motion in a Czochralski crystal puller with an axial magnetic-field-uncertainty in the thermal constants, J. Cryst. Growth 87, 18–32 (1988)ADSCrossRef L.N. Hjellming, J.S. Walker: Melt motion in a Czochralski crystal puller with an axial magnetic-field-uncertainty in the thermal constants, J. Cryst. Growth 87, 18–32 (1988)ADSCrossRef
8.12.
go back to reference S. Kobayashi: Numerical-analysis of oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 85, 69–74 (1987)ADSCrossRef S. Kobayashi: Numerical-analysis of oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 85, 69–74 (1987)ADSCrossRef
8.13.
go back to reference M. Akamatsu, K. Kakimoto, H. Ozoe: Effect of crucible rotation on the melt convection and the structure in a Czochralski method, Transp. Phenom. Therm. Sci. Process Eng. 3, 637–642 (1997) M. Akamatsu, K. Kakimoto, H. Ozoe: Effect of crucible rotation on the melt convection and the structure in a Czochralski method, Transp. Phenom. Therm. Sci. Process Eng. 3, 637–642 (1997)
8.14.
go back to reference K.-W. Yi, K. Kakimoto, M. Eguchi, M. Watanabe, T. Shyo, T. Hibiya: Spoke patterns on molten silicon in Czochralski system, J. Cryst. Growth 144, 20–28 (1994)ADSCrossRef K.-W. Yi, K. Kakimoto, M. Eguchi, M. Watanabe, T. Shyo, T. Hibiya: Spoke patterns on molten silicon in Czochralski system, J. Cryst. Growth 144, 20–28 (1994)ADSCrossRef
8.15.
go back to reference K. Kakimoto, H. Ozoe: Oxygen distribution at a solid–liquid interface of silicon under transverse magnetic fields, J. Cryst. Growth 212, 429–437 (2000)ADSCrossRef K. Kakimoto, H. Ozoe: Oxygen distribution at a solid–liquid interface of silicon under transverse magnetic fields, J. Cryst. Growth 212, 429–437 (2000)ADSCrossRef
8.16.
go back to reference R.A. Brown, T.A. Kinney, P.A. Sackinger, D.E. Bornside: Toward an integrated analysis of Czochralski growth, J. Cryst. Growth 97, 99–115 (1989)ADSCrossRef R.A. Brown, T.A. Kinney, P.A. Sackinger, D.E. Bornside: Toward an integrated analysis of Czochralski growth, J. Cryst. Growth 97, 99–115 (1989)ADSCrossRef
8.17.
go back to reference H. Hirata, N. Inoue: Study of thermal symmetry in Czochralski silicon melt under a vertical magnetic field, Jpn. J. Appl. Phys. 23, L527–L530 (1984)ADSCrossRef H. Hirata, N. Inoue: Study of thermal symmetry in Czochralski silicon melt under a vertical magnetic field, Jpn. J. Appl. Phys. 23, L527–L530 (1984)ADSCrossRef
8.18.
go back to reference H. Hirata, K. Hoshikawa: Silicon crystal growth in a cusp magnetic-field, J. Cryst. Growth 96, 747–755 (1989)ADSCrossRef H. Hirata, K. Hoshikawa: Silicon crystal growth in a cusp magnetic-field, J. Cryst. Growth 96, 747–755 (1989)ADSCrossRef
8.19.
go back to reference H. Hirata, K. Hoshikawa: Homogeneous increase in oxygen concentration in Czochralski silicon-crystals by a cusp magnetic-field, J. Cryst. Growth 98, 777–781 (1989)ADSCrossRef H. Hirata, K. Hoshikawa: Homogeneous increase in oxygen concentration in Czochralski silicon-crystals by a cusp magnetic-field, J. Cryst. Growth 98, 777–781 (1989)ADSCrossRef
8.20.
go back to reference H. Hirata, K. Hoshikawa: Silicon crystal growth in a cusp magnetic field, J. Cryst. Growth 96, 747–755 (1989)ADSCrossRef H. Hirata, K. Hoshikawa: Silicon crystal growth in a cusp magnetic field, J. Cryst. Growth 96, 747–755 (1989)ADSCrossRef
8.21.
go back to reference K. Hoshi, T. Suzuki, Y. Okubo, N. Isawa: Extended Abstracts, Electrochem. Soc. Spring Meet., Vol. 80-1 (The Electrochem. Soc., Pennington 1980) p. 811 K. Hoshi, T. Suzuki, Y. Okubo, N. Isawa: Extended Abstracts, Electrochem. Soc. Spring Meet., Vol. 80-1 (The Electrochem. Soc., Pennington 1980) p. 811
8.22.
go back to reference K. Hoshikawa: Czochralski silicon crystal growth in the vertical magnetic field, Jpn. J. Appl. Phys. 21, L545–L547 (1982)ADSCrossRef K. Hoshikawa: Czochralski silicon crystal growth in the vertical magnetic field, Jpn. J. Appl. Phys. 21, L545–L547 (1982)ADSCrossRef
8.23.
go back to reference K. Hoshikawa, H. Kohda, H. Hirata: Homogeneity of vertical magnetic field applied LEC GaAs crystal, Jpn. J. Appl. Phys. 23, L195–L197 (1984)CrossRef K. Hoshikawa, H. Kohda, H. Hirata: Homogeneity of vertical magnetic field applied LEC GaAs crystal, Jpn. J. Appl. Phys. 23, L195–L197 (1984)CrossRef
8.24.
go back to reference K. Kakimoto, L.J. Liu: Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth, Cryst. Res. Technol. 38, 716–725 (2003)CrossRef K. Kakimoto, L.J. Liu: Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth, Cryst. Res. Technol. 38, 716–725 (2003)CrossRef
8.25.
go back to reference K. Kakimoto: Use of an inhomogeneous magnetic fields for silicon crystal growth, Proc. 2nd Workshop High Magn. Fields, ed. by H. Schneider-Muntau (World Scientific, New York 1997) pp. 21–24 K. Kakimoto: Use of an inhomogeneous magnetic fields for silicon crystal growth, Proc. 2nd Workshop High Magn. Fields, ed. by H. Schneider-Muntau (World Scientific, New York 1997) pp. 21–24
8.26.
go back to reference K. Kakimoto: Flow instability during crystal growth from the melt, Prog. Cryst. Growth Charact. 30, 191–215 (1995)CrossRef K. Kakimoto: Flow instability during crystal growth from the melt, Prog. Cryst. Growth Charact. 30, 191–215 (1995)CrossRef
8.27.
go back to reference K. Kakimoto, Y.W. Yi, M. Eguchi: Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields, J. Cryst. Growth 163, 238–242 (1996)ADSCrossRef K. Kakimoto, Y.W. Yi, M. Eguchi: Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields, J. Cryst. Growth 163, 238–242 (1996)ADSCrossRef
8.28.
go back to reference K. Kakimoto, Y.W. Yi: Use of magnetic fields in crystal growth from semiconductor melts, Physica B 216, 406–408 (1996)ADSCrossRef K. Kakimoto, Y.W. Yi: Use of magnetic fields in crystal growth from semiconductor melts, Physica B 216, 406–408 (1996)ADSCrossRef
8.29.
go back to reference K.M. Kim, W.E. Langlois: Computer-simulation of boron transport in magnetic Czochralski growth of silicon, J. Electrochem. Soc. 133, 2586–2590 (1986)CrossRef K.M. Kim, W.E. Langlois: Computer-simulation of boron transport in magnetic Czochralski growth of silicon, J. Electrochem. Soc. 133, 2586–2590 (1986)CrossRef
8.30.
go back to reference A.E. Organ, N. Riley: Oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 82, 465–476 (1987)ADSCrossRef A.E. Organ, N. Riley: Oxygen-transport in magnetic Czochralski growth of silicon, J. Cryst. Growth 82, 465–476 (1987)ADSCrossRef
8.31.
go back to reference Z.A. Salnick: Oxygen in Czochralski silicon crystals grown under an axial magnetic field, J. Cryst. Growth 121, 775–780 (1992)ADSCrossRef Z.A. Salnick: Oxygen in Czochralski silicon crystals grown under an axial magnetic field, J. Cryst. Growth 121, 775–780 (1992)ADSCrossRef
8.32.
go back to reference T. Suzuki, N. Isawa, Y. Okubo, K. Hoshi: Oxygen in Czochralski silicon crystals grown under a transverse magnetic field, Semiconductor Silicon 1981, ed. by H.R. Huff, R.J. Kriegler, Y. Takeishi (The Electrochem. Soc., Pennington 1981) pp. 90–94 T. Suzuki, N. Isawa, Y. Okubo, K. Hoshi: Oxygen in Czochralski silicon crystals grown under a transverse magnetic field, Semiconductor Silicon 1981, ed. by H.R. Huff, R.J. Kriegler, Y. Takeishi (The Electrochem. Soc., Pennington 1981) pp. 90–94
8.33.
go back to reference R.N. Thomas, H.M. Hobgood, P.S. Ravishankar, T.T. Braggins: Oxygen distribution in silicon crystals grown by transverse magnetic fields, Solid State Technol. April, 163–170 (1990) R.N. Thomas, H.M. Hobgood, P.S. Ravishankar, T.T. Braggins: Oxygen distribution in silicon crystals grown by transverse magnetic fields, Solid State Technol. April, 163–170 (1990)
8.34.
go back to reference M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: The baroclinic flow instability in rotating silicon melt, J. Cryst. Growth 128, 288–292 (1993)ADSCrossRef M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: The baroclinic flow instability in rotating silicon melt, J. Cryst. Growth 128, 288–292 (1993)ADSCrossRef
8.35.
go back to reference M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Flow mode transition and its effects on crystal-melt interface shape and oxygen distribution for Czochralski-grown Si single crystals, J. Cryst. Growth 151, 285–290 (1995)ADSCrossRef M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Flow mode transition and its effects on crystal-melt interface shape and oxygen distribution for Czochralski-grown Si single crystals, J. Cryst. Growth 151, 285–290 (1995)ADSCrossRef
8.36.
go back to reference M.J. Wargo, A.F. Witt: Real-time thermal imaging for analysisi and control of crystal-growth by the Czochralski technique, J. Cryst. Growth 116, 213–224 (1955)ADSCrossRef M.J. Wargo, A.F. Witt: Real-time thermal imaging for analysisi and control of crystal-growth by the Czochralski technique, J. Cryst. Growth 116, 213–224 (1955)ADSCrossRef
8.37.
go back to reference K.-W. Yi, M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Change in velocity in silicon melt of the Czochralski (CZ) process in a vertical magnetic field, Jpn. J. Appl. Phys. 33, L487–L490 (1994)ADSCrossRef K.-W. Yi, M. Watanabe, M. Eguchi, K. Kakimoto, T. Hibiya: Change in velocity in silicon melt of the Czochralski (CZ) process in a vertical magnetic field, Jpn. J. Appl. Phys. 33, L487–L490 (1994)ADSCrossRef
8.38.
go back to reference Y. Gelfgat, J. Krumins, B.Q. Li: Effects of system parameters on MHD flows in rotating magnetic fields, J. Cryst. Growth 210, 788–796 (2000)ADSCrossRef Y. Gelfgat, J. Krumins, B.Q. Li: Effects of system parameters on MHD flows in rotating magnetic fields, J. Cryst. Growth 210, 788–796 (2000)ADSCrossRef
8.39.
go back to reference Y. Gelfgat, E. Jpriede: The influence of combined electromagnetic fields on the heat and mass transfer in a cylindrical vessel with the melt, Magnetohydrodynamics 31, 102–110 (1995) Y. Gelfgat, E. Jpriede: The influence of combined electromagnetic fields on the heat and mass transfer in a cylindrical vessel with the melt, Magnetohydrodynamics 31, 102–110 (1995)
8.40.
go back to reference R.U. Barz, G. Gerbeth, Y. Gelfgat: Numerical simulation of MHD rotator action on hydrodynamics and heat transfer in single crystal growth processes, J. Cryst. Growth 180, 388–400 (1997)CrossRef R.U. Barz, G. Gerbeth, Y. Gelfgat: Numerical simulation of MHD rotator action on hydrodynamics and heat transfer in single crystal growth processes, J. Cryst. Growth 180, 388–400 (1997)CrossRef
8.41.
go back to reference T. Kaiser, K.W. Benz: Taylor vortex instabilities induced by a rotating magnetic field: A numerical approach, Phys. Fluids 10, 1104–1110 (1998)ADSCrossRef T. Kaiser, K.W. Benz: Taylor vortex instabilities induced by a rotating magnetic field: A numerical approach, Phys. Fluids 10, 1104–1110 (1998)ADSCrossRef
8.42.
go back to reference F.-U. Brucker, K. Schwerdtfeger: Single-crystal growth with Czochralski method involving rotational electromagnetic stirring of the melt, J. Cryst. Growth 139, 351–356 (1994)ADSCrossRef F.-U. Brucker, K. Schwerdtfeger: Single-crystal growth with Czochralski method involving rotational electromagnetic stirring of the melt, J. Cryst. Growth 139, 351–356 (1994)ADSCrossRef
8.43.
go back to reference J. Virbulis, T. Wetzel, A. Muiznieks, B. Hanna, E. Dornberger, E. Tomzig, A. Muhlbauer, W. von Ammon: Stress-induced dislocation generation in large FZ- and CZ-silicon single crystals – Numerical model and qualitative considerations, Proc. 3rd Int. Workshop Model. Cryst. Growth (2000) pp. 31–33 J. Virbulis, T. Wetzel, A. Muiznieks, B. Hanna, E. Dornberger, E. Tomzig, A. Muhlbauer, W. von Ammon: Stress-induced dislocation generation in large FZ- and CZ-silicon single crystals – Numerical model and qualitative considerations, Proc. 3rd Int. Workshop Model. Cryst. Growth (2000) pp. 31–33
8.44.
go back to reference L.J. Liu, T. Kitashima, K. Kakimoto: Three-dimantional calculation of Si-CZ growth, Proc. Int. Symp. Process. Technol. Market Dev. 300 mm Si Mater. (ISPM-300mm Si), Beijing (2003) pp. 2551–2555 L.J. Liu, T. Kitashima, K. Kakimoto: Three-dimantional calculation of Si-CZ growth, Proc. Int. Symp. Process. Technol. Market Dev. 300 mm Si Mater. (ISPM-300mm Si), Beijing (2003) pp. 2551–2555
8.45.
go back to reference O. Grabner, G. Mueller, E. Tomzig, W. von Ammon: Effects of various magnetic field configurations on temperature distributions in Czochralski silicon melts, Microelectron. Eng. 56, 83–88 (2001)CrossRef O. Grabner, G. Mueller, E. Tomzig, W. von Ammon: Effects of various magnetic field configurations on temperature distributions in Czochralski silicon melts, Microelectron. Eng. 56, 83–88 (2001)CrossRef
8.46.
go back to reference K. Kakimoto, K.-W. Yi, M. Eguchi: Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields, J. Cryst. Growth 163, 238–242 (1996)ADSCrossRef K. Kakimoto, K.-W. Yi, M. Eguchi: Oxygen transfer during single silicon crystal growth in Czochralski system with vertical magnetic fields, J. Cryst. Growth 163, 238–242 (1996)ADSCrossRef
8.47.
go back to reference A. Krauze, A. Muiznieks, A. Muhlbauer, T. Wetzel, L. Gorbunov, A. Pedchenko, J. Virbulis: Numerical 2-D modelling of turbulent melt flow in CZ system with dynamic magnetic fields, J. Cryst. Growth 266, 40–47 (2004)ADSCrossRef A. Krauze, A. Muiznieks, A. Muhlbauer, T. Wetzel, L. Gorbunov, A. Pedchenko, J. Virbulis: Numerical 2-D modelling of turbulent melt flow in CZ system with dynamic magnetic fields, J. Cryst. Growth 266, 40–47 (2004)ADSCrossRef
8.48.
go back to reference H. Ozoe, M. Iwamoto: Combined effects of crucible rotation and horizontal magnetic field on dopant concentration in a Czochralski melt, J. Cryst. Growth 142, 236–244 (1994)ADSCrossRef H. Ozoe, M. Iwamoto: Combined effects of crucible rotation and horizontal magnetic field on dopant concentration in a Czochralski melt, J. Cryst. Growth 142, 236–244 (1994)ADSCrossRef
8.49.
go back to reference P. Sabhapathy, M.E. Salcudean: Numerical study of Czochralski growth of silicon in an axisymmetric magnetic field, J. Cryst. Growth 113, 164–180 (1991)ADSCrossRef P. Sabhapathy, M.E. Salcudean: Numerical study of Czochralski growth of silicon in an axisymmetric magnetic field, J. Cryst. Growth 113, 164–180 (1991)ADSCrossRef
8.50.
go back to reference K. Kakimoto, H. Watanabe, M. Eguchi, T. Hibiya: Direct observation by X-ray radiography of convection of molten silicon in the Czochralski growth method, J. Cryst. Growth 88, 365–370 (1988)ADSCrossRef K. Kakimoto, H. Watanabe, M. Eguchi, T. Hibiya: Direct observation by X-ray radiography of convection of molten silicon in the Czochralski growth method, J. Cryst. Growth 88, 365–370 (1988)ADSCrossRef
8.51.
go back to reference K. Nakamura, S. Maeda, S. Togawa, T. Saisyoji, T. Tomioka: Effect of the shape of crystal-melt interface on point defect reaction in silicon crystals, ECS Proc. 17, 31–33 (2000) K. Nakamura, S. Maeda, S. Togawa, T. Saisyoji, T. Tomioka: Effect of the shape of crystal-melt interface on point defect reaction in silicon crystals, ECS Proc. 17, 31–33 (2000)
8.52.
go back to reference V. Voronkov: The mechanism of swirl defects formation in silicon, J. Cryst. Growth 59, 625–643 (1982)ADSCrossRef V. Voronkov: The mechanism of swirl defects formation in silicon, J. Cryst. Growth 59, 625–643 (1982)ADSCrossRef
8.53.
go back to reference W. von Ammon, E. Dornberger, H. Oelkrug, H. Weider: The dependence of bulk defects on the axial temperature gradient od silicon crystals during Czochralski growth, J. Cryst. Growth 151, 273–277 (1995)ADSCrossRef W. von Ammon, E. Dornberger, H. Oelkrug, H. Weider: The dependence of bulk defects on the axial temperature gradient od silicon crystals during Czochralski growth, J. Cryst. Growth 151, 273–277 (1995)ADSCrossRef
8.54.
go back to reference K. Nakamura, T. Saisyoji, J. Tomioka: Grown-in defects in silicon crystals, J. Cryst. Growth 237, 1678–1684 (2002)ADSCrossRef K. Nakamura, T. Saisyoji, J. Tomioka: Grown-in defects in silicon crystals, J. Cryst. Growth 237, 1678–1684 (2002)ADSCrossRef
8.55.
go back to reference L. Liu, S. Nakano, K. Kakimoto: An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field, J. Cryst. Growth 282, 49–59 (2005)ADSCrossRef L. Liu, S. Nakano, K. Kakimoto: An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field, J. Cryst. Growth 282, 49–59 (2005)ADSCrossRef
8.56.
go back to reference D. Franke, T. Rettelbach, C. Habler, W. Koch, A. Muller: Silicon ingot casting: process development by numerical simulations, Sol. Energy Mater. Sol. Cells 72, 83–92 (2002)CrossRef D. Franke, T. Rettelbach, C. Habler, W. Koch, A. Muller: Silicon ingot casting: process development by numerical simulations, Sol. Energy Mater. Sol. Cells 72, 83–92 (2002)CrossRef
8.57.
go back to reference M. Ghosh, J. Bahr, A. Muller: Silicon ingot casting: process development by numerical simulations, Proc. 19th Euro. Photovolt. Sol. Energy Conf., Paris (2004) pp. 560–563 M. Ghosh, J. Bahr, A. Muller: Silicon ingot casting: process development by numerical simulations, Proc. 19th Euro. Photovolt. Sol. Energy Conf., Paris (2004) pp. 560–563
8.58.
go back to reference D. Vizman, S. Eichler, J. Friedrich, G. Müller: Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs, J. Cryst. Growth 266, 396–403 (2004)ADSCrossRef D. Vizman, S. Eichler, J. Friedrich, G. Müller: Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs, J. Cryst. Growth 266, 396–403 (2004)ADSCrossRef
8.59.
go back to reference A. Krauze, A. Muiznieks, A. Muhlbauer, T. Wetzel, W. von Ammon: Numerical 3-D modelling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements, J. Cryst. Growth 265, 14–257 (2004)ADSCrossRef A. Krauze, A. Muiznieks, A. Muhlbauer, T. Wetzel, W. von Ammon: Numerical 3-D modelling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements, J. Cryst. Growth 265, 14–257 (2004)ADSCrossRef
8.60.
go back to reference L.J. Liu, K. Kakimoto: D global analysis CZ-Si growth in transverse magnetic field with rotating crucible and crystal, Cryst. Res. Technol. 40, 347–351 (2005)CrossRef L.J. Liu, K. Kakimoto: D global analysis CZ-Si growth in transverse magnetic field with rotating crucible and crystal, Cryst. Res. Technol. 40, 347–351 (2005)CrossRef
8.61.
go back to reference K. Kakimoto, L.J. Liu: Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth, Cryst. Res. Technol. 38, 716–725 (2003)CrossRef K. Kakimoto, L.J. Liu: Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth, Cryst. Res. Technol. 38, 716–725 (2003)CrossRef
8.62.
go back to reference J.J. Derby, R.A. Brown: Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth, J. Cryst. Growth 75, 227–240 (1986)ADSCrossRef J.J. Derby, R.A. Brown: Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth, J. Cryst. Growth 75, 227–240 (1986)ADSCrossRef
8.63.
go back to reference F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters, M.J. Crochet: Global modeling of heat-transfer in crystal growth furnaces, Int. J. Heat Mass Transf. 33, 1849–1871 (1990)CrossRefMATH F. Dupret, P. Nicodeme, Y. Ryckmans, P. Wouters, M.J. Crochet: Global modeling of heat-transfer in crystal growth furnaces, Int. J. Heat Mass Transf. 33, 1849–1871 (1990)CrossRefMATH
8.64.
go back to reference M. Li, Y. Li, N. Imaishi, T. Tsukada: Global simulation of a silicon Czochralski furnace, J. Cryst. Growth 234, 32–46 (2002)ADSCrossRef M. Li, Y. Li, N. Imaishi, T. Tsukada: Global simulation of a silicon Czochralski furnace, J. Cryst. Growth 234, 32–46 (2002)ADSCrossRef
8.65.
go back to reference V.V. Kalaev, I.Y. Evstratov, N.Y. Makarov: Gas flow effect on global heat transport and melt convection in Czochralski silicon growth, J. Cryst. Growth 249, 87–99 (2003)ADSCrossRef V.V. Kalaev, I.Y. Evstratov, N.Y. Makarov: Gas flow effect on global heat transport and melt convection in Czochralski silicon growth, J. Cryst. Growth 249, 87–99 (2003)ADSCrossRef
8.66.
go back to reference L. Liu, K. Kakimoto: Partly three-dimensional global modeling of a silicon Czochralski furnace II. Model application: Analysis of a silicon Czochralski furnace in a transverse magnetic field, Int. J. Heat Mass Transf. 48, 4492–4497 (2005)CrossRefMATH L. Liu, K. Kakimoto: Partly three-dimensional global modeling of a silicon Czochralski furnace II. Model application: Analysis of a silicon Czochralski furnace in a transverse magnetic field, Int. J. Heat Mass Transf. 48, 4492–4497 (2005)CrossRefMATH
8.67.
go back to reference L. Liu, S. Nakano, K. Kakimoto: An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field, J. Cryst. Growth 282, 49–59 (2005)ADSCrossRef L. Liu, S. Nakano, K. Kakimoto: An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field, J. Cryst. Growth 282, 49–59 (2005)ADSCrossRef
8.68.
go back to reference L. Liu, K. Kakimoto: Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model, Int. J. Heat Mass Transf. 48, 4481–4491 (2005)CrossRefMATH L. Liu, K. Kakimoto: Partly three-dimensional global modeling of a silicon Czochralski furnace. I. Principles, formulation and implementation of the model, Int. J. Heat Mass Transf. 48, 4481–4491 (2005)CrossRefMATH
8.69.
go back to reference E.W. Weber: Transition-metal profiles in a silicon crystal, Appl. Phys. A30, 1–15 (1983)ADSCrossRef E.W. Weber: Transition-metal profiles in a silicon crystal, Appl. Phys. A30, 1–15 (1983)ADSCrossRef
8.70.
go back to reference W. Zuhlener, D. Huber: Czochralski crystal growth of silicon. In: Crystal-Growth, Properties and Applications, Vol. 8, ed. by J. Grabmaier (Springer, Berlin, Heidelberg 1988) pp. 1–12 W. Zuhlener, D. Huber: Czochralski crystal growth of silicon. In: Crystal-Growth, Properties and Applications, Vol. 8, ed. by J. Grabmaier (Springer, Berlin, Heidelberg 1988) pp. 1–12
8.71.
go back to reference D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, J.J. Geerligs: Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97, 33523–33527 (2005)CrossRef D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, J.J. Geerligs: Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97, 33523–33527 (2005)CrossRef
Metadata
Title
Czochralski Silicon Single Crystals for Semiconductor and Solar Cell Applications
Author
Koichi Kakimoto
Copyright Year
2010
DOI
https://doi.org/10.1007/978-3-540-74761-1_8

Premium Partners