Skip to main content
Top
Published in: Wireless Personal Communications 2/2022

03-01-2022

D-GF-CNN Algorithm for Modulation Recognition

Authors: Ruiyan Du, Fulai Liu, Jialiang Xu, Fan Gao, Zhongyi Hu, Aiyi Zhang

Published in: Wireless Personal Communications | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a novel modulation recognition algorithm based on dilated convolutional neural network with a new defined GF regularization function, named as D-GF-CNN algorithm. Firstly, an asynchronous delay sampling (ADS) technique is introduced. Via the defined ADS, the received signal is converted into an asynchronous delay histogram (ADH). The ADH of different modulation signals has distinct characteristics, which provides great convenience for the neural network to identify the modulation mode. Then, the pixel point matrix of the ADH is convolved with the dilated convolution kernel of the convolutional neural network, and the automatic extraction of signal features is completed so that the manual feature extraction processing can be effectively avoided. Finally, a novel GF regularization function is given, which can improve the constraint ability of the loss function on the weight and effectively weaken the influence of network over-fitting on the modulation recognition accuracy. Theoretical analysis and simulation experiments show that the proposed algorithm provides several advantages, for example: (1) automatically extract features; (2) effectively prevent network over-fitting; (3) significantly improve recognition accuracy in the lower SNR scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Weaver, C. S., Cole, C. A., & Krumland, R. B. (1969). The automatic classification of modulation types by pattern recognition. Stanford electronic laboratories: Stanford University. Weaver, C. S., Cole, C. A., & Krumland, R. B. (1969). The automatic classification of modulation types by pattern recognition. Stanford electronic laboratories: Stanford University.
2.
go back to reference Huan, C. Y., & Polydoros, A. (1995). Likelihood methods for MPSK modulation classification. IEEE Transactions on Communications, 43(234), 1504. Huan, C. Y., & Polydoros, A. (1995). Likelihood methods for MPSK modulation classification. IEEE Transactions on Communications, 43(234), 1504.
3.
go back to reference Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.CrossRef Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.CrossRef
4.
go back to reference Boiteau, D., & Martret, C. L. (1998). A general maximum likelihood framework for modulation classification. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2165–2168). Boiteau, D., & Martret, C. L. (1998). A general maximum likelihood framework for modulation classification. In IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2165–2168).
5.
go back to reference Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. In IEEE Milcom Century Military Communications Conference. Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. In IEEE Milcom Century Military Communications Conference.
6.
go back to reference Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429.CrossRef Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429.CrossRef
7.
go back to reference Zaerin, M., & Seyfe, B. (2012). Multiuser modulation classification based on cumulants in additive white Gaussian noise channel. IET Signal Processing, 6(9), 815–823.CrossRef Zaerin, M., & Seyfe, B. (2012). Multiuser modulation classification based on cumulants in additive white Gaussian noise channel. IET Signal Processing, 6(9), 815–823.CrossRef
8.
go back to reference Majhi, S., Gupta, R., & Xiang, W. (2017). Hierarchical hypothesis and feature based blind modulation classification for linearly modulated signals. IEEE Transactions on Vehicular Technology, 99, 1–1. Majhi, S., Gupta, R., & Xiang, W. (2017). Hierarchical hypothesis and feature based blind modulation classification for linearly modulated signals. IEEE Transactions on Vehicular Technology, 99, 1–1.
9.
go back to reference Freitas, L. C., Cardoso, C., & Muller, F. C. B. F, (2009). Automatic modulation classification for cognitive radio systems: Results for the symbol and waveform domains. In IEEE Latin-American Conference on Communications. Freitas, L. C., Cardoso, C., & Muller, F. C. B. F, (2009). Automatic modulation classification for cognitive radio systems: Results for the symbol and waveform domains. In IEEE Latin-American Conference on Communications.
10.
go back to reference Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750.
11.
go back to reference Oshea, T. J., West., N. (2016). Radio machine learning dataset generation with gnu radio. Proceedings of the GNU Radio Conference, 1, 1. Oshea, T. J., West., N. (2016). Radio machine learning dataset generation with gnu radio. Proceedings of the GNU Radio Conference, 1, 1.
12.
go back to reference Mendis, G.J., Wei, J., Madanayake, A. (2016). Deep learning-based automated modulation classification for cognitive radio. IEEE International Conference on Communication Systems. Mendis, G.J., Wei, J., Madanayake, A. (2016). Deep learning-based automated modulation classification for cognitive radio. IEEE International Conference on Communication Systems.
13.
go back to reference Xie, Wenwu, Sheng, Hu., Chao, Yu., & Zhu, Peng. (2019). Deep learning in digital modulation recognition using high order cumulants. IEEE Access, 7, 63760–63766.CrossRef Xie, Wenwu, Sheng, Hu., Chao, Yu., & Zhu, Peng. (2019). Deep learning in digital modulation recognition using high order cumulants. IEEE Access, 7, 63760–63766.CrossRef
14.
go back to reference Wang, Y. & Liu, M. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077. Wang, Y. & Liu, M. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077.
15.
go back to reference Meng, F., Chen, P., & Wu, L. (2018). Automatic modulation classification: A deep learning enabled approach. IEEE Transactions on Vehicular Technology, 67(11), 10760–10772.CrossRef Meng, F., Chen, P., & Wu, L. (2018). Automatic modulation classification: A deep learning enabled approach. IEEE Transactions on Vehicular Technology, 67(11), 10760–10772.CrossRef
16.
go back to reference Dods, S. D. Anderson, T. B. (2006). Optical performance monitoring technique using delay tap asynchronous waveform sampling. Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference. Dods, S. D. Anderson, T. B. (2006). Optical performance monitoring technique using delay tap asynchronous waveform sampling. Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.
17.
go back to reference Khan, F. N., Zhou, Y., & Sui, Q. (2014). Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks. Optical Fiber Technology, 20(2), 68–74.CrossRef Khan, F. N., Zhou, Y., & Sui, Q. (2014). Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks. Optical Fiber Technology, 20(2), 68–74.CrossRef
18.
go back to reference Khan, F. N., Teow, C. H., & Kiu, S. G. (2015). Automatic modulation format/bit-rate classification and signal-to-noise ratio estimation using asynchronous delay-tap sampling. Computers & Electrical Engineering, 47, 126–133.CrossRef Khan, F. N., Teow, C. H., & Kiu, S. G. (2015). Automatic modulation format/bit-rate classification and signal-to-noise ratio estimation using asynchronous delay-tap sampling. Computers & Electrical Engineering, 47, 126–133.CrossRef
19.
go back to reference Yu, F., Koltun, V. (2016) Multi-Scale Context Aggregation by Dilated Convolutions. ICLR. Yu, F., Koltun, V. (2016) Multi-Scale Context Aggregation by Dilated Convolutions. ICLR.
20.
go back to reference Tan, K., Chen, J., & Wang, D. L. (2018). Gated residual networks with dilated convolutions for monaural speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 1, 1. Tan, K., Chen, J., & Wang, D. L. (2018). Gated residual networks with dilated convolutions for monaural speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 1, 1.
21.
go back to reference Liu, Y., Liu, Y., & Yang, C. (2020). Modulation recognition with graph convolutional network. IEEE Wireless Communication Letters, 99, 1–1. Liu, Y., Liu, Y., & Yang, C. (2020). Modulation recognition with graph convolutional network. IEEE Wireless Communication Letters, 99, 1–1.
22.
go back to reference Subbarao, M. V., & Samundiswary, P. (2020). Performance analysis of modulation recognition in multipath fading channels using pattern recognition classifiers. Wireless Personal Communications, 115(2), 1. Subbarao, M. V., & Samundiswary, P. (2020). Performance analysis of modulation recognition in multipath fading channels using pattern recognition classifiers. Wireless Personal Communications, 115(2), 1.
23.
go back to reference Shi, W., Liu, D., Cheng, X., Li, Y., & Zhao, Y. (2019). Particle swarm optimization-based deep neural network for digital modulation recognition. IEEE Access, 7, 104591–104600.CrossRef Shi, W., Liu, D., Cheng, X., Li, Y., & Zhao, Y. (2019). Particle swarm optimization-based deep neural network for digital modulation recognition. IEEE Access, 7, 104591–104600.CrossRef
24.
go back to reference Abdelbar, M., Tranter, W. H., & Bose, T. (2018). Cooperative cumulants-based modulation classification in distributed networks. IEEE Transactions on Cognitive Communications and Networking, 4(3), 446–461. Abdelbar, M., Tranter, W. H., & Bose, T. (2018). Cooperative cumulants-based modulation classification in distributed networks. IEEE Transactions on Cognitive Communications and Networking, 4(3), 446–461.
25.
go back to reference Li, L., Ding, Y., & Zhang, J. K. (2012). Blind detection with unique identification in two-way relay channel. IEEE Transactions on Wireless Communications, 11(7), 2640–2648.CrossRef Li, L., Ding, Y., & Zhang, J. K. (2012). Blind detection with unique identification in two-way relay channel. IEEE Transactions on Wireless Communications, 11(7), 2640–2648.CrossRef
26.
go back to reference Han, L., Xue, H., & Gao, F. (2017). Low complexity automatic modulation classification based on order statistics. In IEEE Vehicular Technology Conference. Han, L., Xue, H., & Gao, F. (2017). Low complexity automatic modulation classification based on order statistics. In IEEE Vehicular Technology Conference.
Metadata
Title
D-GF-CNN Algorithm for Modulation Recognition
Authors
Ruiyan Du
Fulai Liu
Jialiang Xu
Fan Gao
Zhongyi Hu
Aiyi Zhang
Publication date
03-01-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09391-2

Other articles of this Issue 2/2022

Wireless Personal Communications 2/2022 Go to the issue