Skip to main content
Top
Published in: Journal of Scientific Computing 1/2021

01-07-2021

Data-Driven Extrapolation Via Feature Augmentation Based on Variably Scaled Thin Plate Splines

Authors: Rosanna Campagna, Emma Perracchione

Published in: Journal of Scientific Computing | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The data driven extrapolation requires the definition of a functional model depending on the available data and has the application scope of providing reliable predictions on the unknown dynamics. Since data might be scattered, we drive our attention towards kernel models that have the advantage of being meshfree. Precisely, the proposed numerical method makes use of the so-called Variably Scaled Kernels (VSKs), which are introduced to implement a feature augmentation-like strategy based on discrete data. Due to the possible uncertainty on the data and since we are interested in modelling the behaviour of the target functions, we seek for a regularized solution by ridge regression. Focusing on polyharmonic splines, we investigate their implementation in the VSK setting and we provide error bounds in Beppo–Levi spaces. The performances of the method are then tested on functions showing exponential or rational decay. Comparisons with Support Vector Regression (SVR) are also carried out and highlight that the proposed approach is effective, particularly since it does not require to train complex architecture constructions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Tests have been carried out on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz processor.
 
Literature
1.
go back to reference Bakas, N.P.: Numerical solution for the extrapolation problem of analytic functions. Research 2019(6), 1–10 (2019)MathSciNetCrossRef Bakas, N.P.: Numerical solution for the extrapolation problem of analytic functions. Research 2019(6), 1–10 (2019)MathSciNetCrossRef
2.
go back to reference Beatson, R., Bui, H.Q., Levesley, J.: Embeddings of Beppo-Levi spaces in Hölder-Zygmund spaces, and a new method for radial basis function interpolation error estimates. J. Approx. Theo. 137(2), 166–178 (2005)CrossRef Beatson, R., Bui, H.Q., Levesley, J.: Embeddings of Beppo-Levi spaces in Hölder-Zygmund spaces, and a new method for radial basis function interpolation error estimates. J. Approx. Theo. 137(2), 166–178 (2005)CrossRef
3.
4.
go back to reference Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 35(1), 199–219 (2015)MathSciNetCrossRef Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 35(1), 199–219 (2015)MathSciNetCrossRef
5.
go back to reference Campagna, R., Bayona, V., Cuomo, S.: Using local PHS+poly approximations for Laplace Transform Inversion by Gaver-Stehfest algorithm. Dolomit. Res. Notes Approx. 13, 55–64 (2020) Campagna, R., Bayona, V., Cuomo, S.: Using local PHS+poly approximations for Laplace Transform Inversion by Gaver-Stehfest algorithm. Dolomit. Res. Notes Approx. 13, 55–64 (2020)
7.
go back to reference Campagna, R., Conti, C., Cuomo, S.: Smoothing exponential-polynomial splines for multiexponential decay data. Dolomit. Res. Notes Approx. 12, 86–100 (2019)MathSciNet Campagna, R., Conti, C., Cuomo, S.: Smoothing exponential-polynomial splines for multiexponential decay data. Dolomit. Res. Notes Approx. 12, 86–100 (2019)MathSciNet
8.
go back to reference Campagna, R., Conti, C., Cuomo, S.: Computational error bounds for Laplace transform inversion based on smoothing splines. Appl. Math. Comput. 383, 125376 (2020)MathSciNetMATH Campagna, R., Conti, C., Cuomo, S.: Computational error bounds for Laplace transform inversion based on smoothing splines. Appl. Math. Comput. 383, 125376 (2020)MathSciNetMATH
9.
go back to reference Campagna, R., Conti, C., Cuomo, S.: A procedure for Laplace transform inversion based on smoothing exponential-polynomial splines. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) Numerical Computations: Theory and Algorithms, pp. 11–18. Springer, Cham (2020)CrossRef Campagna, R., Conti, C., Cuomo, S.: A procedure for Laplace transform inversion based on smoothing exponential-polynomial splines. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) Numerical Computations: Theory and Algorithms, pp. 11–18. Springer, Cham (2020)CrossRef
10.
go back to reference Campagna, R., Cuomo, S., De Marchi, S., Perracchione, E., Severino, G.: A stable meshfree pde solver for source-type flows in porous media. Appl. Numer. Math. 149, 30–42 (2020)MathSciNetCrossRef Campagna, R., Cuomo, S., De Marchi, S., Perracchione, E., Severino, G.: A stable meshfree pde solver for source-type flows in porous media. Appl. Numer. Math. 149, 30–42 (2020)MathSciNetCrossRef
11.
go back to reference Campi, C., Marchetti, F., Perracchione, E.: Learning via Variably Scaled Kernels (VSKs). Adv. Comput. Math. (2021) (to appear) Campi, C., Marchetti, F., Perracchione, E.: Learning via Variably Scaled Kernels (VSKs). Adv. Comput. Math. (2021) (to appear)
12.
go back to reference Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)MathSciNetCrossRef Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)MathSciNetCrossRef
13.
go back to reference Charina, M., Conti, C., Sauer, T.: Regularity of multivariate vector subdivision schemes. Numer. Algor. 39, 97–113 (2005)MathSciNetCrossRef Charina, M., Conti, C., Sauer, T.: Regularity of multivariate vector subdivision schemes. Numer. Algor. 39, 97–113 (2005)MathSciNetCrossRef
14.
15.
go back to reference De Marchi, S., Erb, W., Marchetti, F., Perracchione, E., Rossini, M.: Shape-driven interpolation with discontinuous kernels: Error analysis, edge extraction, and applications in magnetic particle imaging. SIAM J. Sci. Comput. 42(2), B472–B491 (2020)MathSciNetCrossRef De Marchi, S., Erb, W., Marchetti, F., Perracchione, E., Rossini, M.: Shape-driven interpolation with discontinuous kernels: Error analysis, edge extraction, and applications in magnetic particle imaging. SIAM J. Sci. Comput. 42(2), B472–B491 (2020)MathSciNetCrossRef
16.
go back to reference De Marchi, S., Marchetti, F., Perracchione, E.: Jumping with variably scaled discontinuous kernels (VSDKs). BIT Numer. Math. 60, 441–463 (2020)MathSciNetCrossRef De Marchi, S., Marchetti, F., Perracchione, E.: Jumping with variably scaled discontinuous kernels (VSDKs). BIT Numer. Math. 60, 441–463 (2020)MathSciNetCrossRef
17.
18.
go back to reference Deny, J., Lions, J.: Les espaces du type de Beppo Levi. Annal. Inst. Four. 5, 302–370 (1954)MATH Deny, J., Lions, J.: Les espaces du type de Beppo Levi. Annal. Inst. Four. 5, 302–370 (1954)MATH
19.
go back to reference Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. ESAIM Math. Model. Numer. Anal. Modélisation Mathématique et Analyse Numérique 10(R3), 5–12 (1976)MathSciNet Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. ESAIM Math. Model. Numer. Anal. Modélisation Mathématique et Analyse Numérique 10(R3), 5–12 (1976)MathSciNet
20.
go back to reference Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)CrossRef Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, Singapore (2007)CrossRef
21.
go back to reference Fasshauer, G.E., McCourt, M.: Kernel-based Approximation Methods using MATLAB. World Scientific, Singapore (2015)CrossRef Fasshauer, G.E., McCourt, M.: Kernel-based Approximation Methods using MATLAB. World Scientific, Singapore (2015)CrossRef
22.
go back to reference Gao, W., Fasshauer, G.E., Sun, X., Zhou, X.: Optimality and regularization properties of quasi-interpolation: deterministic and stochastic approaches. SIAM J. Numer. Anal. 58(4), 2059–2078 (2020)MathSciNetCrossRef Gao, W., Fasshauer, G.E., Sun, X., Zhou, X.: Optimality and regularization properties of quasi-interpolation: deterministic and stochastic approaches. SIAM J. Numer. Anal. 58(4), 2059–2078 (2020)MathSciNetCrossRef
23.
go back to reference Harder, R., Desmarais, R.: Interpolation using surface splines. J. Aircr. 9(2), 189–191 (1972)CrossRef Harder, R., Desmarais, R.: Interpolation using surface splines. J. Aircr. 9(2), 189–191 (1972)CrossRef
24.
go back to reference Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theo. Methods 6(9), 813–827 (1977)CrossRef Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theo. Methods 6(9), 813–827 (1977)CrossRef
25.
go back to reference Iske, A.: On the approximation order and numerical stability of local lagrange interpolation by polyharmonic splines. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds.) Modern Developments in Multivariate Approximation, pp. 153–165. Birkhäuser Basel, Basel (2003)CrossRef Iske, A.: On the approximation order and numerical stability of local lagrange interpolation by polyharmonic splines. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds.) Modern Developments in Multivariate Approximation, pp. 153–165. Birkhäuser Basel, Basel (2003)CrossRef
26.
go back to reference Li, W., Duan, L., Xu, D., Tsang, I.W.: Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1134–1148 (2014)CrossRef Li, W., Duan, L., Xu, D., Tsang, I.W.: Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1134–1148 (2014)CrossRef
27.
go back to reference Mirzargar, M., Ryan, J., Kirby, R.: Smoothness-Increasing Accuracy-Conserving (SIAC) filtering and quasi-interpolation: A unified view. J. Sci. Comput. 67(1), 237–261 (2016)MathSciNetCrossRef Mirzargar, M., Ryan, J., Kirby, R.: Smoothness-Increasing Accuracy-Conserving (SIAC) filtering and quasi-interpolation: A unified view. J. Sci. Comput. 67(1), 237–261 (2016)MathSciNetCrossRef
28.
go back to reference Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)MATH Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)MATH
29.
go back to reference Powell, M.: The uniform convergence of thin plate spline interpolation in two dimensions. Numer. Math. 68(1), 107–128 (1994)MathSciNetCrossRef Powell, M.: The uniform convergence of thin plate spline interpolation in two dimensions. Numer. Math. 68(1), 107–128 (1994)MathSciNetCrossRef
30.
go back to reference Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. 349, 532–547 (2019)MathSciNetCrossRef Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. 349, 532–547 (2019)MathSciNetCrossRef
31.
go back to reference Romano, A., Campagna, R., Masi, P., Toraldo, G.: NMR data analysis of water mobility in wheat flour dough: A computational approach. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) Numerical Computations: Theory and Algorithms, pp. 146–157. Springer, Cham (2020)CrossRef Romano, A., Campagna, R., Masi, P., Toraldo, G.: NMR data analysis of water mobility in wheat flour dough: A computational approach. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) Numerical Computations: Theory and Algorithms, pp. 146–157. Springer, Cham (2020)CrossRef
32.
go back to reference Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)MathSciNetCrossRef Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)MathSciNetCrossRef
33.
go back to reference Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2002) Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2002)
34.
go back to reference Seber, G., Wild, C.: Nonlinear Regression. Wiley-Interscience, Hoboken (2003)MATH Seber, G., Wild, C.: Nonlinear Regression. Wiley-Interscience, Hoboken (2003)MATH
35.
go back to reference Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRef Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRef
36.
go back to reference Shetty, S., White, P.: Curvature-continuous extensions for rational B-spline curves and surfaces. Comput. Aided Des. 23(7), 484–491 (1991)CrossRef Shetty, S., White, P.: Curvature-continuous extensions for rational B-spline curves and surfaces. Comput. Aided Des. 23(7), 484–491 (1991)CrossRef
37.
go back to reference Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia (1990) Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia (1990)
38.
go back to reference Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge Monographs on Applied and Computational Mathematics (2004) Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge Monographs on Applied and Computational Mathematics (2004)
Metadata
Title
Data-Driven Extrapolation Via Feature Augmentation Based on Variably Scaled Thin Plate Splines
Authors
Rosanna Campagna
Emma Perracchione
Publication date
01-07-2021
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2021
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01526-8

Other articles of this Issue 1/2021

Journal of Scientific Computing 1/2021 Go to the issue

Premium Partner