Skip to main content
Top
Published in: Integrating Materials and Manufacturing Innovation 2/2022

06-04-2022 | Technical Article

Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures

Authors: M. Hasan, Y. Mao, K. Choudhary, F. Tavazza, A. Choudhary, A. Agrawal, P. Acar

Published in: Integrating Materials and Manufacturing Innovation | Issue 2/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present work addresses gradient-based and machine learning (ML)-driven design optimization methods to enhance homogenized linear and nonlinear properties of cubic microstructures. The study computes the homogenized properties as a function of underlying microstructures by linking atomistic-scale and meso-scale models. Here, the microstructure is represented by the orientation distribution function that determines the volume densities of crystallographic orientations. The homogenized property matrix in meso-scale is computed using the single-crystal property values that are obtained by density functional theory calculations. The optimum microstructure designs are validated with the available data in the literature. The single-crystal designs, as expected, are found to provide the extreme values of the linear properties, while the optimum values of the nonlinear properties could be provided by single or polycrystalline microstructures. However, polycrystalline designs are advantageous over single crystals in terms of better manufacturability. With this in mind, an ML-based sampling algorithm is presented to identify top optimum polycrystal solutions for both linear and nonlinear properties without compromising the optimum property values. Moreover, an inverse optimization strategy is presented to design microstructures for prescribed values of homogenized properties, such as the stiffness constant (\(C_{11}\)) and in-plane Young’s modulus (\(E_{11}\)). The applications are presented for aluminum (Al), nickel (Ni), and silicon (Si) microstructures.
Literature
1.
go back to reference Yu Liu M, Greene S, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comp Aided Des 45(1):65–76CrossRef Yu Liu M, Greene S, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comp Aided Des 45(1):65–76CrossRef
2.
go back to reference Mohammed B, Park T, Pourboghrat F, Jun H, Esmaeilpour R, Abu-Farha F (2018) Multiscale crystal plasticity modeling of multiphase advanced high strength steel. Int J Solids Struct 151:57–75CrossRef Mohammed B, Park T, Pourboghrat F, Jun H, Esmaeilpour R, Abu-Farha F (2018) Multiscale crystal plasticity modeling of multiphase advanced high strength steel. Int J Solids Struct 151:57–75CrossRef
3.
go back to reference Horstemeyer MF (2012) Integrated Computational Materials Engineering (ICME) for metals: using multiscale modeling to invigorate engineering design with science. John Wiley & Sons, HobokenCrossRef Horstemeyer MF (2012) Integrated Computational Materials Engineering (ICME) for metals: using multiscale modeling to invigorate engineering design with science. John Wiley & Sons, HobokenCrossRef
4.
go back to reference Adams Brent L, Surya K, Fullwood David T (2012) Microstructure sensitive design for performance optimization. Butterworth-Heinemann, Oxford Adams Brent L, Surya K, Fullwood David T (2012) Microstructure sensitive design for performance optimization. Butterworth-Heinemann, Oxford
5.
go back to reference Johnson OK, Kurniawan C (2018) An efficient algorithm for generating diverse microstructure sets and delineating properties closures. Acta Mater 147:313–321CrossRef Johnson OK, Kurniawan C (2018) An efficient algorithm for generating diverse microstructure sets and delineating properties closures. Acta Mater 147:313–321CrossRef
6.
go back to reference Acar P (2020) A new sampling approach for the multi-scale design of metallic materials. J Mech Des 142(8):081702CrossRef Acar P (2020) A new sampling approach for the multi-scale design of metallic materials. J Mech Des 142(8):081702CrossRef
7.
go back to reference Kalidindi SR, Binci M, Fullwood D, Adams BL (2006) Elastic properties closures using second-order homogenization theories: case studies in composites of two isotropic constituents. Acta Mater 54(11):3117–3126CrossRef Kalidindi SR, Binci M, Fullwood D, Adams BL (2006) Elastic properties closures using second-order homogenization theories: case studies in composites of two isotropic constituents. Acta Mater 54(11):3117–3126CrossRef
8.
go back to reference Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Microstructure sensitive design for performance optimization. Progr Mater Sci 55(6):477–562CrossRef Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Microstructure sensitive design for performance optimization. Progr Mater Sci 55(6):477–562CrossRef
9.
go back to reference Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368CrossRef Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368CrossRef
10.
go back to reference Xu H, Yang L, Brinson C, Chen W (2014) A descriptor-based design methodology for developing heterogeneous microstructural materials system. J Mech Des 136(5):051007CrossRef Xu H, Yang L, Brinson C, Chen W (2014) A descriptor-based design methodology for developing heterogeneous microstructural materials system. J Mech Des 136(5):051007CrossRef
11.
go back to reference Allison J, Backman D, Christodoulou L (2006) Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58(11):25–27CrossRef Allison J, Backman D, Christodoulou L (2006) Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58(11):25–27CrossRef
12.
go back to reference Cowles BA, Backman DG, Dutton RE (2015) Update to recommended best practice for verification and validation of icme methods and models for aerospace applications. Integr Mater Manuf Innov 4(1):16–20CrossRef Cowles BA, Backman DG, Dutton RE (2015) Update to recommended best practice for verification and validation of icme methods and models for aerospace applications. Integr Mater Manuf Innov 4(1):16–20CrossRef
13.
go back to reference Venkatesh V, Green R, O’Connell J, Cernatescu I, Goetz R, Wong T, Streich B, Saraf V, Glavicic M, Slavik D et al (2018) An ICME framework for incorporating bulk residual stresses in rotor component design. Integr Mater Manuf Innov 7(4):173–185CrossRef Venkatesh V, Green R, O’Connell J, Cernatescu I, Goetz R, Wong T, Streich B, Saraf V, Glavicic M, Slavik D et al (2018) An ICME framework for incorporating bulk residual stresses in rotor component design. Integr Mater Manuf Innov 7(4):173–185CrossRef
14.
go back to reference Acharjee S, Zabaras N (2003) A proper orthogonal decomposition approach to microstructure model reduction in rodrigues space with applications to optimal control of microstructure-sensitive properties. Acta Mater 51(18):5627–5646CrossRef Acharjee S, Zabaras N (2003) A proper orthogonal decomposition approach to microstructure model reduction in rodrigues space with applications to optimal control of microstructure-sensitive properties. Acta Mater 51(18):5627–5646CrossRef
15.
go back to reference Ganapathysubramanian S, Zabaras N (2004) Design across length scales: a reduced-order model of polycrystal plasticity for the control of microstructure-sensitive material properties. Comp Methods Appl Mech Eng 193(45–47):5017–5034CrossRef Ganapathysubramanian S, Zabaras N (2004) Design across length scales: a reduced-order model of polycrystal plasticity for the control of microstructure-sensitive material properties. Comp Methods Appl Mech Eng 193(45–47):5017–5034CrossRef
16.
go back to reference Adams BL, Henrie A, Henrie B, Lyon M, Kalidindi SR, Garmestani H (2001) Microstructure-sensitive design of a compliant beam. J Mech Phys Solids 49(8):1639–1663CrossRef Adams BL, Henrie A, Henrie B, Lyon M, Kalidindi SR, Garmestani H (2001) Microstructure-sensitive design of a compliant beam. J Mech Phys Solids 49(8):1639–1663CrossRef
17.
go back to reference Olaf E, Valerie R (2009) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. CRC Press, Boca Raton Olaf E, Valerie R (2009) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. CRC Press, Boca Raton
18.
go back to reference Kocks UF, Tome CN, Wenk H-R (1998) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge Kocks UF, Tome CN, Wenk H-R (1998) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge
19.
go back to reference Kalidindi SR, Houskamp JR, Lyons M, Adams BL (2004) Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int J Plast 20(8–9):1561–1575CrossRef Kalidindi SR, Houskamp JR, Lyons M, Adams BL (2004) Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int J Plast 20(8–9):1561–1575CrossRef
20.
go back to reference Fast T, Knezevic M, Kalidindi SR (2008) Application of microstructure sensitive design to structural components produced from hexagonal polycrystalline metals. Comput Mater Sci 43(2):374–383CrossRef Fast T, Knezevic M, Kalidindi SR (2008) Application of microstructure sensitive design to structural components produced from hexagonal polycrystalline metals. Comput Mater Sci 43(2):374–383CrossRef
21.
go back to reference Zhang X-J, Chen K-Z, Feng X-A (2004) Optimization of material properties needed for material design of components made of multi-heterogeneous materials. Mater Des 25(5):369–378CrossRef Zhang X-J, Chen K-Z, Feng X-A (2004) Optimization of material properties needed for material design of components made of multi-heterogeneous materials. Mater Des 25(5):369–378CrossRef
22.
go back to reference Du P, Zebrowski A, Zola J, Ganapathysubramanian B, Wodo O (2018) Microstructure design using graphs. npj Comput Mater 4(1):1–7 Du P, Zebrowski A, Zola J, Ganapathysubramanian B, Wodo O (2018) Microstructure design using graphs. npj Comput Mater 4(1):1–7
23.
go back to reference Sundararaghavan V, Zabaras N (2007) Linear analysis of texture-property relationships using process-based representations of rodrigues space. Acta Mater 55(5):1573–1587CrossRef Sundararaghavan V, Zabaras N (2007) Linear analysis of texture-property relationships using process-based representations of rodrigues space. Acta Mater 55(5):1573–1587CrossRef
24.
go back to reference Acar P, Sundararaghavan V (2016) Utilization of a linear solver for multiscale design and optimization of microstructures. AIAA J 54:1751–1759CrossRef Acar P, Sundararaghavan V (2016) Utilization of a linear solver for multiscale design and optimization of microstructures. AIAA J 54:1751–1759CrossRef
25.
go back to reference Acar P, Sundararaghavan V (2016) Linear solution scheme for microstructure design with process constraints. AIAA J 54:4022–4031CrossRef Acar P, Sundararaghavan V (2016) Linear solution scheme for microstructure design with process constraints. AIAA J 54:4022–4031CrossRef
26.
go back to reference Rogl P, Podloucky R, Wolf W (2014) DFT calculations: a powerful tool for materials design. J Phase Equilib Diffus 35:221–222CrossRef Rogl P, Podloucky R, Wolf W (2014) DFT calculations: a powerful tool for materials design. J Phase Equilib Diffus 35:221–222CrossRef
27.
go back to reference Hafner J, Wolverton C, Ceder G (2006) Toward computational materials design: the impact of density functional theory on materials research. MRS Bull 31(9):659–668CrossRef Hafner J, Wolverton C, Ceder G (2006) Toward computational materials design: the impact of density functional theory on materials research. MRS Bull 31(9):659–668CrossRef
28.
go back to reference Neugebauer J, Hickel T (2013) Density functional theory in materials science. Wiley Interdiscip Rev Comput Mol Sci 3(5):438–448CrossRef Neugebauer J, Hickel T (2013) Density functional theory in materials science. Wiley Interdiscip Rev Comput Mol Sci 3(5):438–448CrossRef
29.
go back to reference Schleder Gabriel R, Padilha Antonio CM, Mera AC, Marcio C, Adalberto F (2019) From dft to machine learning: recent approaches to materials science-a review. J Phys Mater 2(3):032001CrossRef Schleder Gabriel R, Padilha Antonio CM, Mera AC, Marcio C, Adalberto F (2019) From dft to machine learning: recent approaches to materials science-a review. J Phys Mater 2(3):032001CrossRef
30.
go back to reference Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN, Kalidindi SR (2014) Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov 3(8):1–19 Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN, Kalidindi SR (2014) Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov 3(8):1–19
31.
go back to reference Ankit A, Alok C (2016) Perspective: Materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater 4(053208):1–10 Ankit A, Alok C (2016) Perspective: Materials informatics and big data: realization of the “fourth paradigm” of science in materials science. APL Mater 4(053208):1–10
32.
go back to reference Ramprasad R, Batra R, Pilania G (2017) Arun Mannodi-Kanakkithodi, and Chiho Kim. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 3(1):1–13CrossRef Ramprasad R, Batra R, Pilania G (2017) Arun Mannodi-Kanakkithodi, and Chiho Kim. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 3(1):1–13CrossRef
33.
go back to reference Paul A, Acar P, Ruoqian Liu W, Liao AC, Sundararaghavan V, Agrawal A (2018) Data sampling schemes for microstructure design with vibrational tuning constraints. Am Inst Aeronaut Astronaut (AIAA) J 56(3):1239–1250CrossRef Paul A, Acar P, Ruoqian Liu W, Liao AC, Sundararaghavan V, Agrawal A (2018) Data sampling schemes for microstructure design with vibrational tuning constraints. Am Inst Aeronaut Astronaut (AIAA) J 56(3):1239–1250CrossRef
34.
go back to reference Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) SchNet-a deep learning architecture for molecules and materials. J Chem Phys 148(24):241722CrossRef Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) SchNet-a deep learning architecture for molecules and materials. J Chem Phys 148(24):241722CrossRef
35.
go back to reference Jha D, Ward L, Paul A, Liao W, Choudhary A, Wolverton C, Agrawal A (2018) Elemnet: Deep learning the chemistry of materials from only elemental composition. Sci Rep 8(1):1–13CrossRef Jha D, Ward L, Paul A, Liao W, Choudhary A, Wolverton C, Agrawal A (2018) Elemnet: Deep learning the chemistry of materials from only elemental composition. Sci Rep 8(1):1–13CrossRef
36.
go back to reference Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM (2018) Insightful classification of crystal structures using deep learning. Nature Commun 9(1):1–10CrossRef Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM (2018) Insightful classification of crystal structures using deep learning. Nature Commun 9(1):1–10CrossRef
37.
go back to reference Yang Z, Xiaolin Li L, Brinson C, Choudhary A, Chen W, Agrawal A (2018) Microstructural materials design via deep adversarial learning methodology. J Mech Des 140(11):10CrossRef Yang Z, Xiaolin Li L, Brinson C, Choudhary A, Chen W, Agrawal A (2018) Microstructural materials design via deep adversarial learning methodology. J Mech Des 140(11):10CrossRef
38.
go back to reference Agrawal A, Choudhary A (2019) Deep materials informatics: applications of deep learning in materials science. MRS Commun 9(3):779–792CrossRef Agrawal A, Choudhary A (2019) Deep materials informatics: applications of deep learning in materials science. MRS Commun 9(3):779–792CrossRef
39.
go back to reference Paul A, Acar P, Liao W, Choudhary A, Sundararaghavan V, Agrawal A (2019) Microstructure optimization with constrained design objectives using machine learning-based feedback-aware data-generation. Comput Mater Sci 160:334–351CrossRef Paul A, Acar P, Liao W, Choudhary A, Sundararaghavan V, Agrawal A (2019) Microstructure optimization with constrained design objectives using machine learning-based feedback-aware data-generation. Comput Mater Sci 160:334–351CrossRef
40.
go back to reference Jung J, Yoon JI, Park HK, Kim JY, Kim HS (2019) An efficient machine learning approach to establish structure-property linkages. Comput Mater Sci 156:17–25CrossRef Jung J, Yoon JI, Park HK, Kim JY, Kim HS (2019) An efficient machine learning approach to establish structure-property linkages. Comput Mater Sci 156:17–25CrossRef
41.
go back to reference Jha D, Choudhary K, Tavazza F, Liao WK, Choudhary A, Campbell C, Agrawal A (2019) Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nature Commun 10(1):5316 Jha D, Choudhary K, Tavazza F, Liao WK, Choudhary A, Campbell C, Agrawal A (2019) Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nature Commun 10(1):5316
42.
go back to reference Yang Z, Jha D, Arindam P, W Liao, A Choudhary, Agrawal A (2020) A general framework combining generative adversarial networks and mixture density networks for inverse modeling in microstructural materials design. pp 1–8 Yang Z, Jha D, Arindam P, W Liao, A Choudhary, Agrawal A (2020) A general framework combining generative adversarial networks and mixture density networks for inverse modeling in microstructural materials design. pp 1–8
43.
go back to reference Liu P, Huang H, Antonov S, Wen C, Xue D, Chen H, Li L, Feng Q, Omori T, Yanjing S (2020) Machine learning assisted design of \(\gamma \)’-strengthened co-base superalloys with multi-performance optimization. Npj Comput Mater 6(1):1–9CrossRef Liu P, Huang H, Antonov S, Wen C, Xue D, Chen H, Li L, Feng Q, Omori T, Yanjing S (2020) Machine learning assisted design of \(\gamma \)’-strengthened co-base superalloys with multi-performance optimization. Npj Comput Mater 6(1):1–9CrossRef
44.
go back to reference D Jha, V Gupta, L Ward, Z Yang, C Wolverton, I Foster, W. Liao, Alok N. Choudhary, Ankit Agrawal (2021) Enabling deeper learning on big data for materials informatics applications. Sci Rep 11:4244 D Jha, V Gupta, L Ward, Z Yang, C Wolverton, I Foster, W. Liao, Alok N. Choudhary, Ankit Agrawal (2021) Enabling deeper learning on big data for materials informatics applications. Sci Rep 11:4244
45.
go back to reference Choudhary K, Cheon G, Reed E, Tavazza F (2018) Elastic properties of bulk and low-dimensional materials using van der waals density functional. Phys Rev B 98(1):014107CrossRef Choudhary K, Cheon G, Reed E, Tavazza F (2018) Elastic properties of bulk and low-dimensional materials using van der waals density functional. Phys Rev B 98(1):014107CrossRef
46.
go back to reference Choudhary K, Garrity KF, Reid ACE, DeCost B, Biacchi AJ, Hight AR, Walker ZT, Jason Hattrick-Simpers A, Kusne G, Centrone A et al (2020) The joint automated repository for various integrated simulations (jarvis) for data-driven materials design. npj Comput Mater 6(1):1–13CrossRef Choudhary K, Garrity KF, Reid ACE, DeCost B, Biacchi AJ, Hight AR, Walker ZT, Jason Hattrick-Simpers A, Kusne G, Centrone A et al (2020) The joint automated repository for various integrated simulations (jarvis) for data-driven materials design. npj Comput Mater 6(1):1–13CrossRef
47.
go back to reference Mezeix L, Green DJ (2006) Comparison of the mechanical properties of single crystal and polycrystalline yttrium aluminum garnet. Int J Appl Ceram Technol 3(2):166–176CrossRef Mezeix L, Green DJ (2006) Comparison of the mechanical properties of single crystal and polycrystalline yttrium aluminum garnet. Int J Appl Ceram Technol 3(2):166–176CrossRef
48.
go back to reference Du X, Zhao JC (2017) Facile measurement of single-crystal elastic constants from polycrystalline samples. npj Comput Mater 3(1):1–8 Du X, Zhao JC (2017) Facile measurement of single-crystal elastic constants from polycrystalline samples. npj Comput Mater 3(1):1–8
49.
go back to reference Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169CrossRef
50.
go back to reference Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50CrossRef
51.
go back to reference Jiří K, Bowler David R, Angelos M (2009) Chemical accuracy for the van der waals density functional. J Phys Condensed Matter 22(2):022201 Jiří K, Bowler David R, Angelos M (2009) Chemical accuracy for the van der waals density functional. J Phys Condensed Matter 22(2):022201
52.
go back to reference Bunge H-J (2013) Texture analysis in materials science: mathematical methods. Elsevier, Amsterdam Bunge H-J (2013) Texture analysis in materials science: mathematical methods. Elsevier, Amsterdam
53.
go back to reference Wenk HR (2016) Preferred orientation in deformed metal and rocks: an introduction to modern texture analysis. Elsevier, Amsterdam Wenk HR (2016) Preferred orientation in deformed metal and rocks: an introduction to modern texture analysis. Elsevier, Amsterdam
54.
go back to reference Kumar A, Dawson PR (2000) Computational modeling of fcc deformation textures over rodrigues’ space. Acta Mater 48(10):2719–2736CrossRef Kumar A, Dawson PR (2000) Computational modeling of fcc deformation textures over rodrigues’ space. Acta Mater 48(10):2719–2736CrossRef
55.
go back to reference Geoffrey Ingram Taylor (1938) Plastic strain in metals. J Inst Metals 62:307–324 Geoffrey Ingram Taylor (1938) Plastic strain in metals. J Inst Metals 62:307–324
56.
go back to reference Liu R, Kumar A, Chen Z, Agrawal A, Sundararaghavan V, Choudhary A (2015) A predictive machine learning approach for microstructure optimization and materials design. Sci Rep 5(1):1–12 Liu R, Kumar A, Chen Z, Agrawal A, Sundararaghavan V, Choudhary A (2015) A predictive machine learning approach for microstructure optimization and materials design. Sci Rep 5(1):1–12
57.
go back to reference Liaw A, Wiener M et al (2002) Classification and regression by randomforest. R News 2(3):18–22 Liaw A, Wiener M et al (2002) Classification and regression by randomforest. R News 2(3):18–22
58.
go back to reference Klosek V (2017) Crystallographic textures. EPJ Web Conf. 155:00005 Klosek V (2017) Crystallographic textures. EPJ Web Conf. 155:00005
59.
go back to reference Kunze K, Etter T, Grässlin J, Shklover V (2015) Texture, anisotropy in microstructure and mechanical properties of in738lc alloy processed by selective laser melting (slm). Mater Sci Eng A 620:213–222CrossRef Kunze K, Etter T, Grässlin J, Shklover V (2015) Texture, anisotropy in microstructure and mechanical properties of in738lc alloy processed by selective laser melting (slm). Mater Sci Eng A 620:213–222CrossRef
60.
go back to reference Hearmon RFS (1956) The elastic constants of anisotropic materials-ii. Adv Phys 5(19):323–382CrossRef Hearmon RFS (1956) The elastic constants of anisotropic materials-ii. Adv Phys 5(19):323–382CrossRef
61.
go back to reference Haldipur P, Margetan FJ, Thompson RB (2004) Estimation of single-crystal elastic constants from ultrasonic measurements on polycrystalline specimens, vol 700. American Institute of Physics, College Park, pp 1061–1068 Haldipur P, Margetan FJ, Thompson RB (2004) Estimation of single-crystal elastic constants from ultrasonic measurements on polycrystalline specimens, vol 700. American Institute of Physics, College Park, pp 1061–1068
62.
go back to reference Cantwell Patrick R, Kim H, Schneider Matthew M, Hsu HH, Peroulis D, Stach Eric A, Strachan A (2012) Estimating the in-plane young’s modulus of polycrystalline films in mems. J Microelectromech Syst 21(4):840–849CrossRef Cantwell Patrick R, Kim H, Schneider Matthew M, Hsu HH, Peroulis D, Stach Eric A, Strachan A (2012) Estimating the in-plane young’s modulus of polycrystalline films in mems. J Microelectromech Syst 21(4):840–849CrossRef
63.
go back to reference Ju S-P, Wang C-T, Chien C-H, Huang JC, Jian S-R (2007) The nanoindentation responses of nickel surfaces with different crystal orientations. Molecular Simul 33(11):905–917CrossRef Ju S-P, Wang C-T, Chien C-H, Huang JC, Jian S-R (2007) The nanoindentation responses of nickel surfaces with different crystal orientations. Molecular Simul 33(11):905–917CrossRef
64.
go back to reference Acar P (2019) Eliminating mesh sensitivities in microstructure design with an adjoint algorithm. Finite Elements Anal Design 154:22–29CrossRef Acar P (2019) Eliminating mesh sensitivities in microstructure design with an adjoint algorithm. Finite Elements Anal Design 154:22–29CrossRef
Metadata
Title
Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties of Cubic Microstructures
Authors
M. Hasan
Y. Mao
K. Choudhary
F. Tavazza
A. Choudhary
A. Agrawal
P. Acar
Publication date
06-04-2022
Publisher
Springer International Publishing
Published in
Integrating Materials and Manufacturing Innovation / Issue 2/2022
Print ISSN: 2193-9764
Electronic ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-022-00258-3

Other articles of this Issue 2/2022

Integrating Materials and Manufacturing Innovation 2/2022 Go to the issue

Thematic Section: 6th World Congress on Integrated Computational Materials Engineering

Consistent Quantification of Precipitate Shapes and Sizes in Two and Three Dimensions Using Central Moments

Premium Partners