Skip to main content
Top
Published in: Journal of Materials Science 11/2019

26-02-2019 | Computation and theory

Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators

Authors: G. Pilania, Xiang-Yang Liu, Zhehui Wang

Published in: Journal of Materials Science | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of machine learning (ML) models toward development of validated structure–property relationships for two fundamental properties of activated inorganic scintillators for high energy radiation detection, namely the light yield (LY) and the decay time constant, is explored. The ML models are built on easily accessible proxies of materials—interchangeably referred to as features, descriptors or fingerprints—that are carefully selected on the basis of a physical understanding of the scintillation mechanism. Our study indicates that the developed physics-based ML models employing kernel ridge regression (KRR) and AdaBoost algorithm applied on top of a decision tree-based regression are able to “learn” the underlying design rules in a multi-dimensional feature space and thereby enable reasonably accurate predictions of the two target properties on unseen compounds (i.e., on a held-out test set). For instance, within a set of twenty-five cerium- or europium-doped scintillator materials, our analysis reveals a strong correlation between the average ionic part of the dielectric constant and the LY, irrespective of the specific chemistry of the compounds, indicating that the average ionic part of the dielectric constant is a particularly relevant descriptor toward prediction of the LY. Our results also demonstrate that, despite the use of small training datasets, the developed models are able to quickly distinguish high performing chemistries from those with relatively poor performance and therefore can play a crucial role in screening of new compounds with an attractive combination of targeted properties. The present study provides necessary motivation for future efforts involving ML models with relatively large training datasets, vast feature space explorations, and experimental design in search of promising novel scintillator chemistries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
5.
go back to reference Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J Mater Res 31:977–994CrossRef Jain A, Hautier G, Ong SP, Persson K (2016) New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships. J Mater Res 31:977–994CrossRef
6.
go back to reference Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810 ISSN 2045–2322CrossRef Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810 ISSN 2045–2322CrossRef
7.
go back to reference Lookman T, Balachandran PV, Xue D, Pilania G, Shearman T, Theiler J, Gubernatis JE, Hogden J, Barros K, BenNaim E et al (2016) A perspective on materials informatics: state-of-the-art and challenges. In: Lookman T, Alexander FJ, Rajan K (eds) Information science for materials discovery and design. Springer series in materials science. Springer, Cham, pp 3–12. https://doi.org/10.1007/978-3-319-23871-5_1 ISBN isbn978-3-319-23871-5CrossRef Lookman T, Balachandran PV, Xue D, Pilania G, Shearman T, Theiler J, Gubernatis JE, Hogden J, Barros K, BenNaim E et al (2016) A perspective on materials informatics: state-of-the-art and challenges. In: Lookman T, Alexander FJ, Rajan K (eds) Information science for materials discovery and design. Springer series in materials science. Springer, Cham, pp 3–12. https://​doi.​org/​10.​1007/​978-3-319-23871-5_​1 ISBN isbn978-3-319-23871-5CrossRef
8.
go back to reference Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning and materials informatics: recent applications and prospects. NPJ Comput Mater 3:1–13CrossRef Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning and materials informatics: recent applications and prospects. NPJ Comput Mater 3:1–13CrossRef
11.
go back to reference Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer series in statistics. Springer, New York. ISBN: 978-0-387-84857-0CrossRef Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer series in statistics. Springer, New York. ISBN: 978-0-387-84857-0CrossRef
12.
go back to reference Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361:360–365CrossRef Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361:360–365CrossRef
13.
go back to reference Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559:547–555CrossRef Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559:547–555CrossRef
15.
go back to reference Faber FA, Christensen AS, Huang B, von Lilienfeld OA (2018) Al chemical and structural distribution based representation for universal quantum machine learning. J Chem Phys 148:241717CrossRef Faber FA, Christensen AS, Huang B, von Lilienfeld OA (2018) Al chemical and structural distribution based representation for universal quantum machine learning. J Chem Phys 148:241717CrossRef
16.
go back to reference Huan TD, Batra R, Chapman J, Krishnan S, Chen L, Ramprasad R (2017) A universal strategy for the creation of machine learning-based atomistic force fields. NPJ Comput Mater 3:37. ISSN 2057-3960CrossRef Huan TD, Batra R, Chapman J, Krishnan S, Chen L, Ramprasad R (2017) A universal strategy for the creation of machine learning-based atomistic force fields. NPJ Comput Mater 3:37. ISSN 2057-3960CrossRef
17.
go back to reference Lubbers N, Smith JS, Barros K (2018) Hierarchical modeling of molecular energies using a deep neural network. J Chem Phys 148:241715CrossRef Lubbers N, Smith JS, Barros K (2018) Hierarchical modeling of molecular energies using a deep neural network. J Chem Phys 148:241715CrossRef
18.
go back to reference Deringer VL, Proserpio DM, Csányi G, Pickard CJ (2018) Data-driven learning and prediction of inorganic crystal structures. Faraday Discus 211:45–59CrossRef Deringer VL, Proserpio DM, Csányi G, Pickard CJ (2018) Data-driven learning and prediction of inorganic crystal structures. Faraday Discus 211:45–59CrossRef
19.
go back to reference Goldsmith BR, Boley M, Vreeken J, Scheffler M, Ghiringhelli LM (2017) Uncovering structure–property relationships of materials by subgroup discovery. New J Phys 19:013031CrossRef Goldsmith BR, Boley M, Vreeken J, Scheffler M, Ghiringhelli LM (2017) Uncovering structure–property relationships of materials by subgroup discovery. New J Phys 19:013031CrossRef
20.
go back to reference Pilania G, Balachandran PV, Gubernatis JE, Lookman T (2015) Classification of ABO3 perovskite solids: a machine learning study. Acta Cryst B 71:507–513 ISSN 2052-5206CrossRef Pilania G, Balachandran PV, Gubernatis JE, Lookman T (2015) Classification of ABO3 perovskite solids: a machine learning study. Acta Cryst B 71:507–513 ISSN 2052-5206CrossRef
21.
go back to reference Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ramprasad R (2016a) Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep 6:20952. ISSN 2045-2322CrossRef Mannodi-Kanakkithodi A, Pilania G, Huan TD, Lookman T, Ramprasad R (2016a) Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep 6:20952. ISSN 2045-2322CrossRef
22.
go back to reference Kim C, Pilania G, Ramprasad R (2016a) From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 28:1304–1311CrossRef Kim C, Pilania G, Ramprasad R (2016a) From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 28:1304–1311CrossRef
23.
go back to reference Kim C, Pilania G, Ramprasad R (2016b) Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J Phys Chem C 120:14575–14580CrossRef Kim C, Pilania G, Ramprasad R (2016b) Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites. J Phys Chem C 120:14575–14580CrossRef
24.
go back to reference Li Z, Ma X, Xin H (2017) Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 280:232–238. ISSN 0920-5861CrossRef Li Z, Ma X, Xin H (2017) Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 280:232–238. ISSN 0920-5861CrossRef
26.
go back to reference Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241CrossRef Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7:11241CrossRef
27.
go back to reference Abu-Odeh A, Galvan E, Kirk T, Mao H, Chen Q, Mason P, Malak R, Arróyave R (2018) Efficient exploration of the high entropy alloy composition-phase space. Acta Mater 152:41–57. ISSN 1359-6454CrossRef Abu-Odeh A, Galvan E, Kirk T, Mao H, Chen Q, Mason P, Malak R, Arróyave R (2018) Efficient exploration of the high entropy alloy composition-phase space. Acta Mater 152:41–57. ISSN 1359-6454CrossRef
28.
go back to reference Iwasaki Y, Takeuchi I, Stanev V, Kusne AG, Ishida M, Kirihara A, Ihara K, Sawada R, Terashima K, Someya H (2018) Machine-learning guided discovery of a high-performance spin-driven thermoelectric material. arXiv:1805.02303 Iwasaki Y, Takeuchi I, Stanev V, Kusne AG, Ishida M, Kirihara A, Ihara K, Sawada R, Terashima K, Someya H (2018) Machine-learning guided discovery of a high-performance spin-driven thermoelectric material. arXiv:​1805.​02303
29.
go back to reference Furmanchuk A, Saal JE, Doak JW, Olson GB, Choudhary A, Agrawal A (2018) Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: a machine learning approach. J Comput Chem 39:191–202CrossRef Furmanchuk A, Saal JE, Doak JW, Olson GB, Choudhary A, Agrawal A (2018) Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: a machine learning approach. J Comput Chem 39:191–202CrossRef
30.
go back to reference Acosta CM, Ouyang R, Fazzio A, Scheffler M, Ghiringhelli LM, Carbogno C (2018) Analysis of topological transitions in two-dimensional materials by compressed sensing. arXiv:1805.10950 Acosta CM, Ouyang R, Fazzio A, Scheffler M, Ghiringhelli LM, Carbogno C (2018) Analysis of topological transitions in two-dimensional materials by compressed sensing. arXiv:​1805.​10950
31.
go back to reference Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, Montoya JH, Dwaraknath S, Aykol M, Ortiz C, Tribukait H (2018) Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater 3:5–20CrossRef Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, Montoya JH, Dwaraknath S, Aykol M, Ortiz C, Tribukait H (2018) Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater 3:5–20CrossRef
33.
go back to reference Kong CS, Rajan K (2012) Rational design of binary halide scintillators via data mining. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 680:145–154CrossRef Kong CS, Rajan K (2012) Rational design of binary halide scintillators via data mining. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 680:145–154CrossRef
34.
go back to reference Webb-Robertson B-JM, Ferris KF, Jones DM (2008) Design rules for Ce-activated scintillating radiation detection materials:compromises between luminosity and stopping power. IEEE Trans Nuclear Sci 55:1210–1215CrossRef Webb-Robertson B-JM, Ferris KF, Jones DM (2008) Design rules for Ce-activated scintillating radiation detection materials:compromises between luminosity and stopping power. IEEE Trans Nuclear Sci 55:1210–1215CrossRef
35.
go back to reference Derenzo SE, Weber MJ, Bourret-Courchesne E, Klintenberg MK (2003) The quest for the ideal inorganic scintillator. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 505:111–117. ISSN 0168-9002CrossRef Derenzo SE, Weber MJ, Bourret-Courchesne E, Klintenberg MK (2003) The quest for the ideal inorganic scintillator. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 505:111–117. ISSN 0168-9002CrossRef
36.
go back to reference Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb Sci 13:382–390CrossRef Setyawan W, Gaume RM, Lam S, Feigelson RS, Curtarolo S (2011) High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb Sci 13:382–390CrossRef
37.
go back to reference Derenzo SE, Boswell MS, Bourret-Courchesne E, Boutchko R, Budinger TF, Canning A, Hanrahan SM, Janecek M, Peng Q, Porter-Chapman Y (2008) Design and implementation of a facility for discovering new scintillator materials. IEEE Trans Nuclear Sci 55:1458–1463CrossRef Derenzo SE, Boswell MS, Bourret-Courchesne E, Boutchko R, Budinger TF, Canning A, Hanrahan SM, Janecek M, Peng Q, Porter-Chapman Y (2008) Design and implementation of a facility for discovering new scintillator materials. IEEE Trans Nuclear Sci 55:1458–1463CrossRef
38.
go back to reference Ganguly S, Kong CS, Broderick SR, Rajan K (2013) Informatics-based uncertainty quantification in the design of inorganic scintillators. Mater Manuf Process 28:726–732CrossRef Ganguly S, Kong CS, Broderick SR, Rajan K (2013) Informatics-based uncertainty quantification in the design of inorganic scintillators. Mater Manuf Process 28:726–732CrossRef
39.
go back to reference Broderick S, Rajan K (2015) Informatics derived materials databases for multifunctional properties. Sci Technol Adv Mater 16:013501CrossRef Broderick S, Rajan K (2015) Informatics derived materials databases for multifunctional properties. Sci Technol Adv Mater 16:013501CrossRef
41.
go back to reference Rodnyi PA (1997) Physical processes in inorganic scintillators, vol 14. CRC Press, Boca Raton Rodnyi PA (1997) Physical processes in inorganic scintillators, vol 14. CRC Press, Boca Raton
42.
go back to reference Dorenbos P (2002) Light output and energy resolution of Ce3+-doped scintillators. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 486:208–213. ISSN 0168-9002CrossRef Dorenbos P (2002) Light output and energy resolution of Ce3+-doped scintillators. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 486:208–213. ISSN 0168-9002CrossRef
44.
go back to reference Lempicki A (1995) The physics of inorganic scintillators. J Appl Spectrosc 62:787–802CrossRef Lempicki A (1995) The physics of inorganic scintillators. J Appl Spectrosc 62:787–802CrossRef
45.
go back to reference Robbins DJ (1980) On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J Electrochem Soc 127:2694–2702. ISSN 0013-4651, 1945-7111CrossRef Robbins DJ (1980) On predicting the maximum efficiency of phosphor systems excited by ionizing radiation. J Electrochem Soc 127:2694–2702. ISSN 0013-4651, 1945-7111CrossRef
47.
go back to reference Lempicki A, Wojtowicz AJ, Berman E (1993) Fundamental limits of scintillator performance. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 333:304–311. ISSN 0168-9002CrossRef Lempicki A, Wojtowicz AJ, Berman E (1993) Fundamental limits of scintillator performance. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 333:304–311. ISSN 0168-9002CrossRef
48.
go back to reference Wojtowicz AJ, Berman E, Lempicki A (1992) Stoichiometric cerium compounds as scintillators, II. CeP/sub 5/O/sub 14/. IEEE Trans Nuclear Sci 39:1542–1548. ISSN 0018-9499CrossRef Wojtowicz AJ, Berman E, Lempicki A (1992) Stoichiometric cerium compounds as scintillators, II. CeP/sub 5/O/sub 14/. IEEE Trans Nuclear Sci 39:1542–1548. ISSN 0018-9499CrossRef
51.
go back to reference Henderson B, Imbusch GF (2006) Optical spectroscopy of inorganic solids, vol 44. Oxford University Press, Oxford Henderson B, Imbusch GF (2006) Optical spectroscopy of inorganic solids, vol 44. Oxford University Press, Oxford
52.
go back to reference Lecoq P, Gektin A, Korzhik M (2016) Inorganic scintillators for detector systems: physical principles and crystal engineering. Springer, Cham Lecoq P, Gektin A, Korzhik M (2016) Inorganic scintillators for detector systems: physical principles and crystal engineering. Springer, Cham
53.
go back to reference Glodo J, Loef EVDV, Higgins WM, Shah KS (2008) Mixed lutetium iodide compounds. IEEE Trans Nuclear Sci 55:1496–1500. ISSN 0018-9499CrossRef Glodo J, Loef EVDV, Higgins WM, Shah KS (2008) Mixed lutetium iodide compounds. IEEE Trans Nuclear Sci 55:1496–1500. ISSN 0018-9499CrossRef
54.
go back to reference van’t Spijker JC, Dorenbos P, Allier CP, van Eijk CWE, Ettema ARHF, Huber G (1998) Lu2S3:Ce3+, a new red luminescing scintillator. Nuclear Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 134:304–309. ISSN 0168-583XCrossRef van’t Spijker JC, Dorenbos P, Allier CP, van Eijk CWE, Ettema ARHF, Huber G (1998) Lu2S3:Ce3+, a new red luminescing scintillator. Nuclear Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 134:304–309. ISSN 0168-583XCrossRef
55.
go back to reference Nikl M (2006) Scintillation detectors for x-rays. Meas Sci Technol 17:R37–R54. ISSN 0957-0233CrossRef Nikl M (2006) Scintillation detectors for x-rays. Meas Sci Technol 17:R37–R54. ISSN 0957-0233CrossRef
56.
go back to reference Yan Z, Gundiah G, Bizarri GA, Samulon EC, Derenzo SE, Bourret-Courchesne ED (2014) Eu2+-activated BaCl2, BaBr2 and BaI2 scintillators revisited. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 735:83–87. ISSN 0168-9002CrossRef Yan Z, Gundiah G, Bizarri GA, Samulon EC, Derenzo SE, Bourret-Courchesne ED (2014) Eu2+-activated BaCl2, BaBr2 and BaI2 scintillators revisited. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 735:83–87. ISSN 0168-9002CrossRef
57.
go back to reference Bizarri G, Bourret-Courchesne ED, Yan Z, Derenzo SE (2011) Scintillation and optical properties of BaBrI: Eu2+ and CsBa2I5: Eu2+. IEEE Trans Nuclear Sci 58:3403–3410. ISSN 0018-9499CrossRef Bizarri G, Bourret-Courchesne ED, Yan Z, Derenzo SE (2011) Scintillation and optical properties of BaBrI: Eu2+ and CsBa2I5: Eu2+. IEEE Trans Nuclear Sci 58:3403–3410. ISSN 0018-9499CrossRef
58.
go back to reference Gundiah G, Yan Z, Bizarri G, Derenzo SE, Bourret-Courchesne ED (2013) Structure and scintillation of Eu2+-activated BaBrCl and solid solutions in the BaCl2–BaBr2 system. J Lumin 138:143–149. ISSN 0022-2313CrossRef Gundiah G, Yan Z, Bizarri G, Derenzo SE, Bourret-Courchesne ED (2013) Structure and scintillation of Eu2+-activated BaBrCl and solid solutions in the BaCl2–BaBr2 system. J Lumin 138:143–149. ISSN 0022-2313CrossRef
59.
go back to reference Gundiah G, Bourret-Courchesne E, Bizarri G, Hanrahan SM, Chaudhry A, Canning A, Moses WW, Derenzo SE (2010) Scintillation properties of Eu2+-activated barium fluoroiodide. IEEE Trans Nuclear Sci 57:1702–1705. ISSN 0018-9499CrossRef Gundiah G, Bourret-Courchesne E, Bizarri G, Hanrahan SM, Chaudhry A, Canning A, Moses WW, Derenzo SE (2010) Scintillation properties of Eu2+-activated barium fluoroiodide. IEEE Trans Nuclear Sci 57:1702–1705. ISSN 0018-9499CrossRef
60.
go back to reference Borade R, Bourret-Courchesne E, Derenzo S (2011) Scintillation properties of CsBa2Br5:Eu2+. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 652:260–263. ISSN 0168-9002CrossRef Borade R, Bourret-Courchesne E, Derenzo S (2011) Scintillation properties of CsBa2Br5:Eu2+. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 652:260–263. ISSN 0168-9002CrossRef
61.
go back to reference Alekhin MS, Biner DA, Krämer KW, Dorenbos P (2014) Optical and scintillation properties of CsBa2I5:Eu2+. J Lumin 145:723–728. ISSN 0022-2313CrossRef Alekhin MS, Biner DA, Krämer KW, Dorenbos P (2014) Optical and scintillation properties of CsBa2I5:Eu2+. J Lumin 145:723–728. ISSN 0022-2313CrossRef
62.
go back to reference Stand L, Zhuravleva M, Wei H, Melcher CL (2015a) Crystal growth and scintillation properties of potassium strontium bromide. Opt Mater 46:59–63. ISSN 0925-3467CrossRef Stand L, Zhuravleva M, Wei H, Melcher CL (2015a) Crystal growth and scintillation properties of potassium strontium bromide. Opt Mater 46:59–63. ISSN 0925-3467CrossRef
63.
go back to reference Stand L, Zhuravleva M, Lindsey A, Melcher CL (2015b) Growth and characterization of potassium strontium iodide: a new high light yield scintillator with 2.4% energy resolution. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 780:40–44. ISSN 0168-9002CrossRef Stand L, Zhuravleva M, Lindsey A, Melcher CL (2015b) Growth and characterization of potassium strontium iodide: a new high light yield scintillator with 2.4% energy resolution. Nuclear Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 780:40–44. ISSN 0168-9002CrossRef
64.
go back to reference Zhuravleva M, Blalock B, Yang K, Koschan M, Melcher CL (2012) New single crystal scintillators: CsCaCl3:Eu and CsCaI3:Eu. J Cryst Growth 352:115–119. ISSN 0022-0248CrossRef Zhuravleva M, Blalock B, Yang K, Koschan M, Melcher CL (2012) New single crystal scintillators: CsCaCl3:Eu and CsCaI3:Eu. J Cryst Growth 352:115–119. ISSN 0022-0248CrossRef
65.
go back to reference Stand L, Zhuravleva M, Chakoumakos B, Johnson J, Lindsey A, Melcher C (2016) Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4. J Lumin 169:301–307. ISSN 0022-2313CrossRef Stand L, Zhuravleva M, Chakoumakos B, Johnson J, Lindsey A, Melcher C (2016) Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4. J Lumin 169:301–307. ISSN 0022-2313CrossRef
66.
go back to reference Lindsey AC, Zhuravleva M, Stand L, Wu Y, Melcher CL (2015) Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator. Opt Mater 48:1–6. ISSN 0925-3467CrossRef Lindsey AC, Zhuravleva M, Stand L, Wu Y, Melcher CL (2015) Crystal growth and characterization of europium doped KCaI3, a high light yield scintillator. Opt Mater 48:1–6. ISSN 0925-3467CrossRef
70.
go back to reference Haynes WM (2014) CRC handbook of chemistry and physics. CRC Press, Boca Raton Haynes WM (2014) CRC handbook of chemistry and physics. CRC Press, Boca Raton
80.
go back to reference Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater 2:16028CrossRef Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater 2:16028CrossRef
81.
go back to reference Pilania G, Balachandran PV, Kim C, Lookman T (2016a) Finding new perovskite Halides via machine learning. Front Mater 3:19CrossRef Pilania G, Balachandran PV, Kim C, Lookman T (2016a) Finding new perovskite Halides via machine learning. Front Mater 3:19CrossRef
82.
go back to reference Balachandran PV, Emery AA, Gubernatis JE, Lookman T, Wolverton C, Zunger A (2018) Predictions of new ABO3 perovskite compounds by combining machine learningand density functional theory. Phys Rev Mater 2:043802CrossRef Balachandran PV, Emery AA, Gubernatis JE, Lookman T, Wolverton C, Zunger A (2018) Predictions of new ABO3 perovskite compounds by combining machine learningand density functional theory. Phys Rev Mater 2:043802CrossRef
83.
go back to reference Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS (2015) Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350:185–189CrossRef Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS (2015) Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350:185–189CrossRef
84.
go back to reference Sifain AE, Lubbers N, Nebgen BT, Smith JS, Lokhov AY, Isayev O, Roitberg AE, Barros K, Tretiak S (2018) Discovering a transferable charge assignment model using machine learning. J Phys Chem Lett 9:4495–4501CrossRef Sifain AE, Lubbers N, Nebgen BT, Smith JS, Lokhov AY, Isayev O, Roitberg AE, Barros K, Tretiak S (2018) Discovering a transferable charge assignment model using machine learning. J Phys Chem Lett 9:4495–4501CrossRef
85.
go back to reference Li Y (2006) Predicting materials properties and behavior using classification. Mater Sci Eng A 433:261–268CrossRef Li Y (2006) Predicting materials properties and behavior using classification. Mater Sci Eng A 433:261–268CrossRef
86.
go back to reference Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) SchNet—a deep learning architecture for molecules and materials. J Chem Phys 148:241722CrossRef Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) SchNet—a deep learning architecture for molecules and materials. J Chem Phys 148:241722CrossRef
87.
go back to reference Agrawal A, Meredig B, Wolverton C, Choudhary A (2016) A formation energy predictor for crystallinematerials using ensemble data mining. In: 2016 IEEE 16th international conference on IEEE data mining workshops (ICDMW), pp. 1276–1279 Agrawal A, Meredig B, Wolverton C, Choudhary A (2016) A formation energy predictor for crystallinematerials using ensemble data mining. In: 2016 IEEE 16th international conference on IEEE data mining workshops (ICDMW), pp. 1276–1279
88.
go back to reference Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Machine learning: proceedings of the thirteenth international conference, vol 96, pp 148–156 Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Machine learning: proceedings of the thirteenth international conference, vol 96, pp 148–156
89.
go back to reference Rojas R (2009) The secret life of the covariance matrix. Technical report, Freie University, Berlin Rojas R (2009) The secret life of the covariance matrix. Technical report, Freie University, Berlin
90.
go back to reference Pilania G, Mannodi-Kanakkithodi A, Uberuaga BP, Ramprasad R, Gubernatis JE, Lookman T (2016b) Machine learning bandgaps of double perovskites. Sci Rep 6:19375CrossRef Pilania G, Mannodi-Kanakkithodi A, Uberuaga BP, Ramprasad R, Gubernatis JE, Lookman T (2016b) Machine learning bandgaps of double perovskites. Sci Rep 6:19375CrossRef
92.
go back to reference Mannodi-Kanakkithodi A, Pilania G, Ramprasad R (2016b) Critical assessment of regression-based machine learning methods for polymer dielectrics. Comput Mater Sci 125:123–135CrossRef Mannodi-Kanakkithodi A, Pilania G, Ramprasad R (2016b) Critical assessment of regression-based machine learning methods for polymer dielectrics. Comput Mater Sci 125:123–135CrossRef
93.
go back to reference Drucker H (1997) Improving regressors using boosting techniques. In: ICML, vol 97, pp 107–115 Drucker H (1997) Improving regressors using boosting techniques. In: ICML, vol 97, pp 107–115
94.
go back to reference Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14:771–780 Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14:771–780
Metadata
Title
Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators
Authors
G. Pilania
Xiang-Yang Liu
Zhehui Wang
Publication date
26-02-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 11/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03434-7

Other articles of this Issue 11/2019

Journal of Materials Science 11/2019 Go to the issue

Premium Partners