Skip to main content
Top

2021 | OriginalPaper | Chapter

4. Data Management in Modernizing the Future Multi-Carrier Energy Networks

Authors : Mohammadreza Daneshvar, Somayeh Asadi, Behnam Mohammadi-Ivatloo

Published in: Grid Modernization ─ Future Energy Network Infrastructure

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, diverse activities and initiatives for upgrading the existing power system to the modern energy network have led to discovering a significant requirement for a great revolution in the structure, design, and development of a communications infrastructure with the aim of creating effective interoperability among the controllable systems. In the meantime, the increasing penetration of an array of information technologies and controllable devices together suggests that the communications networks enact critical roles in the electric power infrastructure. Indeed, reconfiguration of the current structure of the multi-carrier energy networks by incorporating the advanced communication protocols is one of the essential steps in the grid modernization process. Therefore, this chapter is developed to introduce the required communication systems for modernizing future energy networks. In this regard, the key role of the communication platforms in coordinating the grid agents is examined considering the effective participation of the various control centers and intelligent devices throughout the modern grid. Also, this chapter investigates how to implement some effective technologies such as the Internet of Things (IoT) in the modern energy grid by adopting capable technologies such as the Internet of Energy while satisfying the modern energy networks’ standards.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Rogelj et al., Paris agreement climate proposals need a boost to keep warming well below 2 C. Nature 534(7609), 631–639 (2016)CrossRef J. Rogelj et al., Paris agreement climate proposals need a boost to keep warming well below 2 C. Nature 534(7609), 631–639 (2016)CrossRef
2.
go back to reference V.C. Gungor et al., A survey on smart grid potential applications and communication requirements. IEEE Trans. Industr. Inform. 9(1), 28–42 (2012)CrossRef V.C. Gungor et al., A survey on smart grid potential applications and communication requirements. IEEE Trans. Industr. Inform. 9(1), 28–42 (2012)CrossRef
3.
go back to reference B. Saha, D. Srivastava, Data quality: The other face of big data, in 2014 IEEE 30th International Conference on Data Engineering, (IEEE, USA, 2014), pp. 1294–1297 B. Saha, D. Srivastava, Data quality: The other face of big data, in 2014 IEEE 30th International Conference on Data Engineering, (IEEE, USA, 2014), pp. 1294–1297
4.
go back to reference M. Daneshvar, B. Mohammadi-Ivatloo, M. Abapour, S. Asadi, Energy exchange control in multiple microgrids with transactive energy management. J. Mod. Power Syst. Clean Energy 8, 719–726 (2020)CrossRef M. Daneshvar, B. Mohammadi-Ivatloo, M. Abapour, S. Asadi, Energy exchange control in multiple microgrids with transactive energy management. J. Mod. Power Syst. Clean Energy 8, 719–726 (2020)CrossRef
5.
go back to reference J. Schleich, C. Faure, M. Klobasa, Persistence of the effects of providing feedback alongside smart metering devices on household electricity demand. Energy Policy 107, 225–233 (2017)CrossRef J. Schleich, C. Faure, M. Klobasa, Persistence of the effects of providing feedback alongside smart metering devices on household electricity demand. Energy Policy 107, 225–233 (2017)CrossRef
6.
go back to reference S.S. Reka, T. Dragicevic, Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid. Renew. Sust. Energ. Rev. 91, 90–108 (2018)CrossRef S.S. Reka, T. Dragicevic, Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid. Renew. Sust. Energ. Rev. 91, 90–108 (2018)CrossRef
7.
go back to reference M. Daneshvar, M. Pesaran, B. Mohammadi-Ivatloo, Transactive energy in future smart homes, in The Energy Internet, (Elsevier, Cambridge, England, 2019), pp. 153–179 M. Daneshvar, M. Pesaran, B. Mohammadi-Ivatloo, Transactive energy in future smart homes, in The Energy Internet, (Elsevier, Cambridge, England, 2019), pp. 153–179
8.
go back to reference B. Hong, W. Zhang, Y. Zhou, J. Chen, Y. Xiang, Y. Mu, Energy-Internet-oriented microgrid energy management system architecture and its application in China. Appl. Energy 228, 2153–2164 (2018)CrossRef B. Hong, W. Zhang, Y. Zhou, J. Chen, Y. Xiang, Y. Mu, Energy-Internet-oriented microgrid energy management system architecture and its application in China. Appl. Energy 228, 2153–2164 (2018)CrossRef
9.
go back to reference H. Zhao et al., Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach. Appl. Energy 254, 113554 (2019)CrossRef H. Zhao et al., Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach. Appl. Energy 254, 113554 (2019)CrossRef
10.
go back to reference M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, S. Asadi, Two-stage robust stochastic scheduling model for transactive energy based renewable microgrids. IEEE Trans. Industr. Inform. 16, 6857–6867 (2020)CrossRef M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, S. Asadi, Two-stage robust stochastic scheduling model for transactive energy based renewable microgrids. IEEE Trans. Industr. Inform. 16, 6857–6867 (2020)CrossRef
11.
go back to reference M. Daneshvar, B. Mohammadi-Ivatloo, S. Asadi, M. Abapour, A. Anvari-Moghaddam, A Transactive Energy Management Framework for Regional Network of Microgrids, in 2019 International Conference on Smart Energy Systems and Technologies (SEST), (IEEE, USA, 2019), pp. 1–6 M. Daneshvar, B. Mohammadi-Ivatloo, S. Asadi, M. Abapour, A. Anvari-Moghaddam, A Transactive Energy Management Framework for Regional Network of Microgrids, in 2019 International Conference on Smart Energy Systems and Technologies (SEST), (IEEE, USA, 2019), pp. 1–6
12.
go back to reference H.-y. Zheng, N. Jin, C. Ji, Z. Xiong, K. Li, Analysis technology and typical scenario application of electricity big data of power consumers. Power Syst. Technol. 39(11), 3147–3152 (2015) H.-y. Zheng, N. Jin, C. Ji, Z. Xiong, K. Li, Analysis technology and typical scenario application of electricity big data of power consumers. Power Syst. Technol. 39(11), 3147–3152 (2015)
13.
go back to reference E. Hossain, I. Khan, F. Un-Noor, S.S. Sikander, M.S.H. Sunny, Application of big data and machine learning in smart grid, and associated security concerns: A review. IEEE Access 7, 13960–13988 (2019)CrossRef E. Hossain, I. Khan, F. Un-Noor, S.S. Sikander, M.S.H. Sunny, Application of big data and machine learning in smart grid, and associated security concerns: A review. IEEE Access 7, 13960–13988 (2019)CrossRef
14.
go back to reference X. Wang, Y. Shi, J. Zhang, L. Bo, C. Cheng, Computation services and applications of electricity big data based on Hadoop. Power Syst. Technol. 11(39), 3128–3133 (2015) X. Wang, Y. Shi, J. Zhang, L. Bo, C. Cheng, Computation services and applications of electricity big data based on Hadoop. Power Syst. Technol. 11(39), 3128–3133 (2015)
15.
go back to reference L. Wen, K. Zhou, S. Yang, L. Li, Compression of smart meter big data: A survey. Renew. Sust. Energ. Rev. 91, 59–69 (2018)CrossRef L. Wen, K. Zhou, S. Yang, L. Li, Compression of smart meter big data: A survey. Renew. Sust. Energ. Rev. 91, 59–69 (2018)CrossRef
16.
go back to reference Y. Huang, X. Zhou, Knowledge model for electric power big data based on ontology and semantic web. CSEE J. Power Energy Syst. 1(1), 19–27 (2015)CrossRef Y. Huang, X. Zhou, Knowledge model for electric power big data based on ontology and semantic web. CSEE J. Power Energy Syst. 1(1), 19–27 (2015)CrossRef
17.
go back to reference X. Peng, D. Deng, S. Cheng, J. Wen, Z. Li, L. Niu, Key technologies of electric power big data and its application prospects in smart grid. Proc. CSEE 35(3), 503–511 (2015) X. Peng, D. Deng, S. Cheng, J. Wen, Z. Li, L. Niu, Key technologies of electric power big data and its application prospects in smart grid. Proc. CSEE 35(3), 503–511 (2015)
18.
go back to reference A. Ukil, R. Zivanovic, Automated analysis of power systems disturbance records: Smart grid big data perspective, in 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), (IEEE, Piscataway, 2014), pp. 126–131CrossRef A. Ukil, R. Zivanovic, Automated analysis of power systems disturbance records: Smart grid big data perspective, in 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), (IEEE, Piscataway, 2014), pp. 126–131CrossRef
19.
go back to reference F. McLoughlin, A. Duffy, M. Conlon, A clustering approach to domestic electricity load profile characterisation using smart metering data. Appl. Energy 141, 190–199 (2015)CrossRef F. McLoughlin, A. Duffy, M. Conlon, A clustering approach to domestic electricity load profile characterisation using smart metering data. Appl. Energy 141, 190–199 (2015)CrossRef
20.
go back to reference Y.-J. Kim, M. Thottan, V. Kolesnikov, W. Lee, A secure decentralized data-centric information infrastructure for smart grid. IEEE Commun. Mag. 48(11), 58–65 (2010)CrossRef Y.-J. Kim, M. Thottan, V. Kolesnikov, W. Lee, A secure decentralized data-centric information infrastructure for smart grid. IEEE Commun. Mag. 48(11), 58–65 (2010)CrossRef
21.
go back to reference Y. Wang, Q. Chen, T. Hong, C. Kang, Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 10(3), 3125–3148 (2018)CrossRef Y. Wang, Q. Chen, T. Hong, C. Kang, Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 10(3), 3125–3148 (2018)CrossRef
22.
go back to reference M. Daneshvar et al., The chance-constrained models for transactive energy management of interconnected microgrids clusters. J. Clean. Prod. 271, 122177 (2020)CrossRef M. Daneshvar et al., The chance-constrained models for transactive energy management of interconnected microgrids clusters. J. Clean. Prod. 271, 122177 (2020)CrossRef
23.
go back to reference M. Daneshvar, S. Asadi, CPS-based transactive energy technology for smart grids, in Cyber-Physical Systems in the Built Environment, (Springer, Cham, 2020), pp. 323–338CrossRef M. Daneshvar, S. Asadi, CPS-based transactive energy technology for smart grids, in Cyber-Physical Systems in the Built Environment, (Springer, Cham, 2020), pp. 323–338CrossRef
24.
go back to reference K. Reddy, M. Kumar, T. Mallick, H. Sharon, S. Lokeswaran, A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid. Renew. Sust. Energ. Rev. 38, 180–192 (2014)CrossRef K. Reddy, M. Kumar, T. Mallick, H. Sharon, S. Lokeswaran, A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid. Renew. Sust. Energ. Rev. 38, 180–192 (2014)CrossRef
25.
go back to reference A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, D. Irwin, Private memoirs of a smart meter, in Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, (ACM Digital Library, Zurich, Switzerland, 2010), pp. 61–66 A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, D. Irwin, Private memoirs of a smart meter, in Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, (ACM Digital Library, Zurich, Switzerland, 2010), pp. 61–66
26.
go back to reference Z. Guo, Z.J. Wang, A. Kashani, Home appliance load modeling from aggregated smart meter data. IEEE Trans. Power Syst. 30(1), 254–262 (2014)CrossRef Z. Guo, Z.J. Wang, A. Kashani, Home appliance load modeling from aggregated smart meter data. IEEE Trans. Power Syst. 30(1), 254–262 (2014)CrossRef
27.
go back to reference K. Zhou, S. Yang, Understanding household energy consumption behavior: The contribution of energy big data analytics. Renew. Sust. Energ. Rev. 56, 810–819 (2016)CrossRef K. Zhou, S. Yang, Understanding household energy consumption behavior: The contribution of energy big data analytics. Renew. Sust. Energ. Rev. 56, 810–819 (2016)CrossRef
28.
go back to reference T. Ahmad, Non-technical loss analysis and prevention using smart meters. Renew. Sust. Energ. Rev. 72, 573–589 (2017)CrossRef T. Ahmad, Non-technical loss analysis and prevention using smart meters. Renew. Sust. Energ. Rev. 72, 573–589 (2017)CrossRef
29.
go back to reference R.R. Mohassel, A. Fung, F. Mohammadi, K. Raahemifar, A survey on advanced metering infrastructure. Int. J. Electr. Power Energy Syst. 63, 473–484 (2014)CrossRef R.R. Mohassel, A. Fung, F. Mohammadi, K. Raahemifar, A survey on advanced metering infrastructure. Int. J. Electr. Power Energy Syst. 63, 473–484 (2014)CrossRef
30.
go back to reference A. Aziz, S. Khalid, M. Mustafa, H. Shareef, G. Aliyu, Artificial intelligent meter development based on advanced metering infrastructure technology. Renew. Sust. Energ. Rev. 27, 191–197 (2013)CrossRef A. Aziz, S. Khalid, M. Mustafa, H. Shareef, G. Aliyu, Artificial intelligent meter development based on advanced metering infrastructure technology. Renew. Sust. Energ. Rev. 27, 191–197 (2013)CrossRef
31.
go back to reference NETL Modern Grid Strategy, Advanced metering infrastructure, in US Department of Energy Office of Electricity and Energy Reliability, 2008 NETL Modern Grid Strategy, Advanced metering infrastructure, in US Department of Energy Office of Electricity and Energy Reliability, 2008
32.
go back to reference S.S.S.R. Depuru, L. Wang, V. Devabhaktuni, N. Gudi, Smart meters for power grid—Challenges, issues, advantages and status, in 2011 IEEE/PES Power Systems Conference and Exposition, (IEEE, USA, 2011), pp. 1–7 S.S.S.R. Depuru, L. Wang, V. Devabhaktuni, N. Gudi, Smart meters for power grid—Challenges, issues, advantages and status, in 2011 IEEE/PES Power Systems Conference and Exposition, (IEEE, USA, 2011), pp. 1–7
33.
go back to reference R. Roman, J. Zhou, J. Lopez, On the features and challenges of security and privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)CrossRef R. Roman, J. Zhou, J. Lopez, On the features and challenges of security and privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)CrossRef
34.
go back to reference W. Rui-gang, Main character and basic theory for Internet of Things. Comput. Sci. 39(6A), 201–206 (2012) W. Rui-gang, Main character and basic theory for Internet of Things. Comput. Sci. 39(6A), 201–206 (2012)
35.
go back to reference H.J. La, A conceptual framework for trajectory-based medical analytics with IoT contexts. J. Comput. Syst. Sci. 82(4), 610–626 (2016)MathSciNetCrossRef H.J. La, A conceptual framework for trajectory-based medical analytics with IoT contexts. J. Comput. Syst. Sci. 82(4), 610–626 (2016)MathSciNetCrossRef
36.
go back to reference S. Tonyali, K. Akkaya, N. Saputro, A.S. Uluagac, M. Nojoumian, Privacy-preserving protocols for secure and reliable data aggregation in IoT-enabled Smart Metering systems. Futur. Gener. Comput. Syst. 78, 547–557 (2018)CrossRef S. Tonyali, K. Akkaya, N. Saputro, A.S. Uluagac, M. Nojoumian, Privacy-preserving protocols for secure and reliable data aggregation in IoT-enabled Smart Metering systems. Futur. Gener. Comput. Syst. 78, 547–557 (2018)CrossRef
37.
go back to reference C. Tu, X. He, Z. Shuai, F. Jiang, Big data issues in smart grid: A review. Renew. Sust. Energ. Rev. 79, 1099–1107 (2017)CrossRef C. Tu, X. He, Z. Shuai, F. Jiang, Big data issues in smart grid: A review. Renew. Sust. Energ. Rev. 79, 1099–1107 (2017)CrossRef
38.
go back to reference M.L. Tuballa, M.L. Abundo, A review of the development of Smart Grid technologies. Renew. Sust. Energ. Rev. 59, 710–725 (2016)CrossRef M.L. Tuballa, M.L. Abundo, A review of the development of Smart Grid technologies. Renew. Sust. Energ. Rev. 59, 710–725 (2016)CrossRef
39.
go back to reference M. Jin et al., Energy-cyber-physical systems. Appl. Energy 256, 113939 (2019)CrossRef M. Jin et al., Energy-cyber-physical systems. Appl. Energy 256, 113939 (2019)CrossRef
40.
go back to reference S. Zeadally, N. Jabeur, Cyber-Physical System Design with Sensor Networking Technologies (Institution of Engineering and Technology, London, 2016) S. Zeadally, N. Jabeur, Cyber-Physical System Design with Sensor Networking Technologies (Institution of Engineering and Technology, London, 2016)
41.
go back to reference A. Sheth, P. Anantharam, C. Henson, Physical-cyber-social computing: An early 21st century approach. IEEE Intell. Syst. 28(1), 78–82 (2013)CrossRef A. Sheth, P. Anantharam, C. Henson, Physical-cyber-social computing: An early 21st century approach. IEEE Intell. Syst. 28(1), 78–82 (2013)CrossRef
42.
go back to reference J. Zeng, L.T. Yang, M. Lin, H. Ning, J. Ma, A survey: Cyber-physical-social systems and their system-level design methodology. Futur. Gener. Comput. Syst. 105, 1028–1042 (2020)CrossRef J. Zeng, L.T. Yang, M. Lin, H. Ning, J. Ma, A survey: Cyber-physical-social systems and their system-level design methodology. Futur. Gener. Comput. Syst. 105, 1028–1042 (2020)CrossRef
43.
go back to reference L. Wang, X.V. Wang, Cloud-Based Cyber-Physical Systems in Manufacturing (Springer, Cham, 2018)CrossRef L. Wang, X.V. Wang, Cloud-Based Cyber-Physical Systems in Manufacturing (Springer, Cham, 2018)CrossRef
44.
go back to reference P. Sobhrajan, S.Y. Nikam, D. Pimpri, P.D. Pimpri, Comparative study of abstraction in cyber physical system. Int. J. Comput. Sci. Inf. Technol. 5, 466–469 (2014) P. Sobhrajan, S.Y. Nikam, D. Pimpri, P.D. Pimpri, Comparative study of abstraction in cyber physical system. Int. J. Comput. Sci. Inf. Technol. 5, 466–469 (2014)
45.
go back to reference R. Alguliyev, Y. Imamverdiyev, L. Sukhostat, Cyber-physical systems and their security issues. Comput. Ind. 100, 212–223 (2018)CrossRef R. Alguliyev, Y. Imamverdiyev, L. Sukhostat, Cyber-physical systems and their security issues. Comput. Ind. 100, 212–223 (2018)CrossRef
46.
go back to reference M. Krotofil, A.A. Cárdenas, Resilience of process control systems to cyber-physical attacks, in Nordic Conference on Secure IT Systems, (Springer, Berlin, Heidelberg, 2013), pp. 166–182CrossRef M. Krotofil, A.A. Cárdenas, Resilience of process control systems to cyber-physical attacks, in Nordic Conference on Secure IT Systems, (Springer, Berlin, Heidelberg, 2013), pp. 166–182CrossRef
47.
go back to reference A. Hahn, R.K. Thomas, I. Lozano, A. Cardenas, A multi-layered and kill-chain based security analysis framework for cyber-physical systems. Int. J. Crit. Infrastruct. Prot. 11, 39–50 (2015)CrossRef A. Hahn, R.K. Thomas, I. Lozano, A. Cardenas, A multi-layered and kill-chain based security analysis framework for cyber-physical systems. Int. J. Crit. Infrastruct. Prot. 11, 39–50 (2015)CrossRef
48.
go back to reference F.-J. Wu, Y.-F. Kao, Y.-C. Tseng, From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7(4), 397–413 (2011)CrossRef F.-J. Wu, Y.-F. Kao, Y.-C. Tseng, From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7(4), 397–413 (2011)CrossRef
49.
go back to reference H. Li, L. Lai, H.V. Poor, Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE J. Sel. Areas Commun. 30(6), 1097–1107 (2012)CrossRef H. Li, L. Lai, H.V. Poor, Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE J. Sel. Areas Commun. 30(6), 1097–1107 (2012)CrossRef
50.
go back to reference C.H. Liu, Y. Zhang, Cyber Physical Systems: Architectures, Protocols and Applications (CRC Press, Boca Raton, 2015)CrossRef C.H. Liu, Y. Zhang, Cyber Physical Systems: Architectures, Protocols and Applications (CRC Press, Boca Raton, 2015)CrossRef
51.
go back to reference J. Vitorino et al., Industry 4.0-digital twin applied to direct digital manufacturing. Appl. Mech. Mater. 890, 54–60 (2019).: Trans Tech PublicationsCrossRef J. Vitorino et al., Industry 4.0-digital twin applied to direct digital manufacturing. Appl. Mech. Mater. 890, 54–60 (2019).: Trans Tech PublicationsCrossRef
52.
go back to reference A. El Saddik, Digital twins: The convergence of multimedia technologies. IEEE MultiMedia 25(2), 87–92 (2018)CrossRef A. El Saddik, Digital twins: The convergence of multimedia technologies. IEEE MultiMedia 25(2), 87–92 (2018)CrossRef
53.
go back to reference G. Bacchiega, Creating an embedded digital twin: monitor, understand and predict device health failure, in Inn4mech-Mechatronics and Industry, (Inn4mech, Italy, 2018), vol. 4 G. Bacchiega, Creating an embedded digital twin: monitor, understand and predict device health failure, in Inn4mech-Mechatronics and Industry, (Inn4mech, Italy, 2018), vol. 4
54.
go back to reference S. Malakuti, J. Schmitt, M. Platenius-Mohr, S. Grüner, R. Gitzel, P. Bihani, A four-layer architecture pattern for constructing and managing digital twins, in European Conference on Software Architecture, (Springer, Cham, 2019), pp. 231–246 S. Malakuti, J. Schmitt, M. Platenius-Mohr, S. Grüner, R. Gitzel, P. Bihani, A four-layer architecture pattern for constructing and managing digital twins, in European Conference on Software Architecture, (Springer, Cham, 2019), pp. 231–246
55.
go back to reference M. Bacidore, Digital twin to enable asset optimization. Smart Industry, 2015 M. Bacidore, Digital twin to enable asset optimization. Smart Industry, 2015
56.
go back to reference D. Bolton, What Are Digital Twins and Why Will They Be Integral to the Internet of Things, 2018 D. Bolton, What Are Digital Twins and Why Will They Be Integral to the Internet of Things, 2018
57.
go back to reference M.E. Porter, J.E. Heppelmann, How smart, connected products are transforming companies. Harv. Bus. Rev. 93(10), 96–114 (2015) M.E. Porter, J.E. Heppelmann, How smart, connected products are transforming companies. Harv. Bus. Rev. 93(10), 96–114 (2015)
58.
go back to reference D. Tilson, K. Lyytinen, C. Sørensen, Research commentary—Digital infrastructures: The missing IS research agenda. Inf. Syst. Res. 21(4), 748–759 (2010)CrossRef D. Tilson, K. Lyytinen, C. Sørensen, Research commentary—Digital infrastructures: The missing IS research agenda. Inf. Syst. Res. 21(4), 748–759 (2010)CrossRef
60.
go back to reference Y. Cai, B. Starly, P. Cohen, Y.-S. Lee, Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manuf. 10, 1031–1042 (2017)CrossRef Y. Cai, B. Starly, P. Cohen, Y.-S. Lee, Sensor data and information fusion to construct digital-twins virtual machine tools for cyber-physical manufacturing. Procedia Manuf. 10, 1031–1042 (2017)CrossRef
61.
go back to reference R. Rosen, G. Von Wichert, G. Lo, K.D. Bettenhausen, About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3), 567–572 (2015)CrossRef R. Rosen, G. Von Wichert, G. Lo, K.D. Bettenhausen, About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3), 567–572 (2015)CrossRef
62.
go back to reference M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, S. Asadi, A. Anvari-Moghaddam, A novel operational model for interconnected microgrids participation in transactive energy market: A hybrid IGDT/stochastic approach. IEEE Trans. Industr. Inform., 1 (2020). https://doi.org/10.1109/TII.2020.3012446 M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, S. Asadi, A. Anvari-Moghaddam, A novel operational model for interconnected microgrids participation in transactive energy market: A hybrid IGDT/stochastic approach. IEEE Trans. Industr. Inform., 1 (2020). https://​doi.​org/​10.​1109/​TII.​2020.​3012446
63.
go back to reference K. Zhou, S. Yang, Z. Shao, Energy internet: The business perspective. Appl. Energy 178, 212–222 (2016)CrossRef K. Zhou, S. Yang, Z. Shao, Energy internet: The business perspective. Appl. Energy 178, 212–222 (2016)CrossRef
64.
go back to reference J. Rifkin, The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World (Macmillan, New York, 2011) J. Rifkin, The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World (Macmillan, New York, 2011)
65.
go back to reference Z. Wei, S. Yu, G. Sun, Y. Sun, Y. Yuan, D. Wang, Concept and development of virtual power plant. Autom. Electr. Power Syst. 37(13), 1–9 (2013) Z. Wei, S. Yu, G. Sun, Y. Sun, Y. Yuan, D. Wang, Concept and development of virtual power plant. Autom. Electr. Power Syst. 37(13), 1–9 (2013)
66.
go back to reference X. Zhang, J. Li, H. Fu, Distribution power & energy internet: from virtual power plants to virtual power systems. Proc. CSEE 35(14), 3532–3540 (2015) X. Zhang, J. Li, H. Fu, Distribution power & energy internet: from virtual power plants to virtual power systems. Proc. CSEE 35(14), 3532–3540 (2015)
67.
go back to reference K. Wang, X. Hu, H. Li, P. Li, D. Zeng, S. Guo, A survey on energy internet communications for sustainability. IEEE Trans. Sustain. Comput. 2(3), 231–254 (2017)CrossRef K. Wang, X. Hu, H. Li, P. Li, D. Zeng, S. Guo, A survey on energy internet communications for sustainability. IEEE Trans. Sustain. Comput. 2(3), 231–254 (2017)CrossRef
68.
go back to reference F.F. Wu, P.P. Varaiya, R.S. Hui, Smart grids with intelligent periphery: An architecture for the energy internet. Engineering 1(4), 436–446 (2015)CrossRef F.F. Wu, P.P. Varaiya, R.S. Hui, Smart grids with intelligent periphery: An architecture for the energy internet. Engineering 1(4), 436–446 (2015)CrossRef
69.
go back to reference A.Q. Huang, M.L. Crow, G.T. Heydt, J.P. Zheng, S.J. Dale, The future renewable electric energy delivery and management (FREEDM) system: The energy internet. Proc. IEEE 99(1), 133–148 (2010)CrossRef A.Q. Huang, M.L. Crow, G.T. Heydt, J.P. Zheng, S.J. Dale, The future renewable electric energy delivery and management (FREEDM) system: The energy internet. Proc. IEEE 99(1), 133–148 (2010)CrossRef
70.
go back to reference M. Gao, K. Wang, L. He, Probabilistic model checking and scheduling implementation of an energy router system in energy internet for green cities. IEEE Trans. Industr. Inform. 14(4), 1501–1510 (2018)CrossRef M. Gao, K. Wang, L. He, Probabilistic model checking and scheduling implementation of an energy router system in energy internet for green cities. IEEE Trans. Industr. Inform. 14(4), 1501–1510 (2018)CrossRef
71.
go back to reference International Energy and Climate Change, World Energy Outlook Special, ed. Rep, 2015 International Energy and Climate Change, World Energy Outlook Special, ed. Rep, 2015
72.
go back to reference D. Tayal, Achieving high renewable energy penetration in Western Australia using data digitisation and machine learning. Renew. Sust. Energ. Rev. 80, 1537–1543 (2017)CrossRef D. Tayal, Achieving high renewable energy penetration in Western Australia using data digitisation and machine learning. Renew. Sust. Energ. Rev. 80, 1537–1543 (2017)CrossRef
73.
go back to reference M. Sharifzadeh, A. Sikinioti-Lock, N. Shah, Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sust. Energ. Rev. 108, 513–538 (2019)CrossRef M. Sharifzadeh, A. Sikinioti-Lock, N. Shah, Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sust. Energ. Rev. 108, 513–538 (2019)CrossRef
74.
go back to reference S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall, Upper Saddle River, 2002)MATH S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall, Upper Saddle River, 2002)MATH
75.
go back to reference E. Alpaydin, Introduction to Machine Learning (MIT Press, Cambridge, MA, 2020)MATH E. Alpaydin, Introduction to Machine Learning (MIT Press, Cambridge, MA, 2020)MATH
76.
go back to reference R. Sathya, A. Abraham, Comparison of supervised and unsupervised learning algorithms for pattern classification. Int. J. Adv. Res. Artif. Intell. 2(2), 34–38 (2013)CrossRef R. Sathya, A. Abraham, Comparison of supervised and unsupervised learning algorithms for pattern classification. Int. J. Adv. Res. Artif. Intell. 2(2), 34–38 (2013)CrossRef
78.
go back to reference H. Zhao, J. Zheng, W. Deng, Y. Song, Semi-supervised broad learning system based on manifold regularization and broad network. IEEE Trans. Circuits Syst. I Regul. Pap. 67(3), 983–994 (2020)MathSciNetCrossRef H. Zhao, J. Zheng, W. Deng, Y. Song, Semi-supervised broad learning system based on manifold regularization and broad network. IEEE Trans. Circuits Syst. I Regul. Pap. 67(3), 983–994 (2020)MathSciNetCrossRef
79.
go back to reference M. Wiering, M. Van Otterlo, Reinforcement Learning, Adaptation, Learning, and Optimization, vol 12 (Springer, Berlin, Heidelberg/New York, 2012), p. 3CrossRef M. Wiering, M. Van Otterlo, Reinforcement Learning, Adaptation, Learning, and Optimization, vol 12 (Springer, Berlin, Heidelberg/New York, 2012), p. 3CrossRef
80.
go back to reference S. Bozinovski, A self-learning system using secondary reinforcement, in Cybernetics and Systems Research, (North-Holland, Amsterdam, 1982), pp. 397–402 S. Bozinovski, A self-learning system using secondary reinforcement, in Cybernetics and Systems Research, (North-Holland, Amsterdam, 1982), pp. 397–402
81.
go back to reference S. Bozinovski, Modeling mechanisms of cognition-emotion interaction in artificial neural networks, since 1981. Procedia Comput. Sci. 41, 255–263 (2014)CrossRef S. Bozinovski, Modeling mechanisms of cognition-emotion interaction in artificial neural networks, since 1981. Procedia Comput. Sci. 41, 255–263 (2014)CrossRef
82.
go back to reference Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef
83.
go back to reference F. Meng, X. Yang, C. Zhou, Z. Li, A sparse dictionary learning-based adaptive patch inpainting method for thick clouds removal from high-spatial resolution remote sensing imagery. Sensors 17(9), 2130 (2017)CrossRef F. Meng, X. Yang, C. Zhou, Z. Li, A sparse dictionary learning-based adaptive patch inpainting method for thick clouds removal from high-spatial resolution remote sensing imagery. Sensors 17(9), 2130 (2017)CrossRef
84.
85.
go back to reference V. Hodge, J. Austin, A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)MATHCrossRef V. Hodge, J. Austin, A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)MATHCrossRef
86.
go back to reference O. Kroemer, S. Niekum, G. Konidaris, A review of robot learning for manipulation: Challenges, representations, and algorithms. arXiv:1907.03146 (2019) O. Kroemer, S. Niekum, G. Konidaris, A review of robot learning for manipulation: Challenges, representations, and algorithms. arXiv:1907.03146 (2019)
87.
go back to reference S. Ozawa, T. Ban, N. Hashimoto, J. Nakazato, J. Shimamura, A study of IoT malware activities using association rule learning for darknet sensor data. Int. J. Inf. Secur. 19(1), 83–92 (2020)CrossRef S. Ozawa, T. Ban, N. Hashimoto, J. Nakazato, J. Shimamura, A study of IoT malware activities using association rule learning for darknet sensor data. Int. J. Inf. Secur. 19(1), 83–92 (2020)CrossRef
88.
go back to reference A. Foucquier, S. Robert, F. Suard, L. Stéphan, A. Jay, State of the art in building modelling and energy performances prediction: A review. Renew. Sust. Energ. Rev. 23, 272–288 (2013)CrossRef A. Foucquier, S. Robert, F. Suard, L. Stéphan, A. Jay, State of the art in building modelling and energy performances prediction: A review. Renew. Sust. Energ. Rev. 23, 272–288 (2013)CrossRef
89.
go back to reference B. Yildiz, J.I. Bilbao, A.B. Sproul, A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sust. Energ. Rev. 73, 1104–1122 (2017)CrossRef B. Yildiz, J.I. Bilbao, A.B. Sproul, A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sust. Energ. Rev. 73, 1104–1122 (2017)CrossRef
90.
go back to reference H.-X. Zhao, F. Magoulès, A review on the prediction of building energy consumption. Renew. Sust. Energ. Rev. 16(6), 3586–3592 (2012)CrossRef H.-X. Zhao, F. Magoulès, A review on the prediction of building energy consumption. Renew. Sust. Energ. Rev. 16(6), 3586–3592 (2012)CrossRef
91.
go back to reference S.M. Clarke, J.H. Griebsch, T.W. Simpson, Analysis of support vector regression for approximation of complex engineering analyses. J. Mech. Des. 127(6), 1077–1087 (2005)CrossRef S.M. Clarke, J.H. Griebsch, T.W. Simpson, Analysis of support vector regression for approximation of complex engineering analyses. J. Mech. Des. 127(6), 1077–1087 (2005)CrossRef
92.
go back to reference J. Lafferty, L. Wasserman, Challenges in statistical machine learning. Stat. Sin. 16(2), 307 (2006)MathSciNet J. Lafferty, L. Wasserman, Challenges in statistical machine learning. Stat. Sin. 16(2), 307 (2006)MathSciNet
93.
go back to reference R. Blanquero, E. Carrizosa, C. Molero-Río, D.R. Morales, Sparsity in optimal randomized classification trees. Eur. J. Oper. Res. 284(1), 255–272 (2020)MathSciNetMATHCrossRef R. Blanquero, E. Carrizosa, C. Molero-Río, D.R. Morales, Sparsity in optimal randomized classification trees. Eur. J. Oper. Res. 284(1), 255–272 (2020)MathSciNetMATHCrossRef
94.
go back to reference B. Cai, Y. Liu, Z. Liu, Y. Chang, L. Jiang, Risk analysis of subsea blowout preventer by mapping GO models into Bayesian networks, in Bayesian Networks for Reliability Engineering, (Springer, Singapore, 2020), pp. 165–187CrossRef B. Cai, Y. Liu, Z. Liu, Y. Chang, L. Jiang, Risk analysis of subsea blowout preventer by mapping GO models into Bayesian networks, in Bayesian Networks for Reliability Engineering, (Springer, Singapore, 2020), pp. 165–187CrossRef
95.
go back to reference J. Zhang et al., Evolutionary computation meets machine learning: A survey. IEEE Comput. Intell. Mag. 6(4), 68–75 (2011)CrossRef J. Zhang et al., Evolutionary computation meets machine learning: A survey. IEEE Comput. Intell. Mag. 6(4), 68–75 (2011)CrossRef
96.
go back to reference K. Hosanagar, A. Saxena, The first wave of corporate AI is doomed to fail. Harvard Business Review, 18 Apr 2017 K. Hosanagar, A. Saxena, The first wave of corporate AI is doomed to fail. Harvard Business Review, 18 Apr 2017
98.
go back to reference K.M. Lee, J. Yoo, S.-W. Kim, J.-H. Lee, J. Hong, Autonomic machine learning platform. Int. J. Inf. Manag. 49, 491–501 (2019)CrossRef K.M. Lee, J. Yoo, S.-W. Kim, J.-H. Lee, J. Hong, Autonomic machine learning platform. Int. J. Inf. Manag. 49, 491–501 (2019)CrossRef
99.
go back to reference A. Almalaq, G. Edwards, A review of deep learning methods applied on load forecasting, in 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), (IEEE, USA, 2017), pp. 511–516 A. Almalaq, G. Edwards, A review of deep learning methods applied on load forecasting, in 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), (IEEE, USA, 2017), pp. 511–516
100.
go back to reference I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, MA, 2016)MATH I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, MA, 2016)MATH
101.
go back to reference D.L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using deep neural networks, in IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, (IEEE, Piscataway, 2016), pp. 7046–7051CrossRef D.L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using deep neural networks, in IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, (IEEE, Piscataway, 2016), pp. 7046–7051CrossRef
102.
go back to reference P.-F. Pai, W.-C. Hong, Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manag. 46(17), 2669–2688 (2005)CrossRef P.-F. Pai, W.-C. Hong, Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manag. 46(17), 2669–2688 (2005)CrossRef
103.
go back to reference S. Ryu, J. Noh, H. Kim, Deep neural network based demand side short term load forecasting. Energies 10(1), 3 (2017)CrossRef S. Ryu, J. Noh, H. Kim, Deep neural network based demand side short term load forecasting. Energies 10(1), 3 (2017)CrossRef
Metadata
Title
Data Management in Modernizing the Future Multi-Carrier Energy Networks
Authors
Mohammadreza Daneshvar
Somayeh Asadi
Behnam Mohammadi-Ivatloo
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-64099-6_4