Skip to main content
Top
Published in: Wireless Personal Communications 2/2023

16-03-2023

DDPG with Transfer Learning and Meta Learning Framework for Resource Allocation in Underlay Cognitive Radio Network

Authors: Nikita Mishra, Sumit Srivastava, Shivendra Nath Sharan

Published in: Wireless Personal Communications | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cognitive Radio (CR) is an intelligent device equipped with a Cognitive Engine (CE) capable of making decisions and finding the best policy for a dynamic network. Superior decision-making policy takes extensive learning time. A suitable learning algorithm reduces the learning time and provides a boost to CE capabilities. The underlay CR model allows PU and SU to coexist in the same frequency band by restricting SU interference below an acceptable level. This paper presents an underlay Resource Allocation (RA) model that employs Transfer Learning (TL) and Meta Reinforcement Learning (MRL) to solve a non-convex optimization problem. The allocation of resources is performed by incorporating TL and MRL into the existing Deep Deterministic Policy Gradient (DDPG) method. The merging of TL and MRL accelerates the network’s learning process and allows it to adapt rapidly to the changing environments. The proposed algorithms are compared to basic Q learning, dueling Deep Q Networks, and hybrid algorithms in terms of Quality of Experience (QoE) metric, learning speed, congestion rate, and stability. The simulation findings indicate that our proposed approach outperforms the existing techniques. The adaptability of the network is also tested by changing the environment from Additive White Gaussian Noise (AWGN) to Rayleigh fading. In addition, trade-offs between network scalability, congestion, and performance are evaluated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Slamnik-Krijestorac, N., Kremo, H., Ruffini, M., & Marquez-Barja, J. M. (2020). Sharing distributed and heterogeneous resources toward end-to-end 5G networks: A comprehensive survey and a taxonomy. IEEE Communications Surveys & Tutorials, 22(3), 1592–1628. Slamnik-Krijestorac, N., Kremo, H., Ruffini, M., & Marquez-Barja, J. M. (2020). Sharing distributed and heterogeneous resources toward end-to-end 5G networks: A comprehensive survey and a taxonomy. IEEE Communications Surveys & Tutorials, 22(3), 1592–1628.
2.
go back to reference Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys & Tutorials, 23(2), 668–695.CrossRef Xu, Y., Gui, G., Gacanin, H., & Adachi, F. (2021). A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges. IEEE Communications Surveys & Tutorials, 23(2), 668–695.CrossRef
3.
go back to reference Li, T., Zhu, K., Luong, N. C., Niyato, D., Wu, Q., Zhang, Y., & Chen, B. (2022). Applications of Multi-Agent Reinforcement Learning in Future Internet: A Comprehensive Survey. IEEE Communications Surveys & Tutorials. Li, T., Zhu, K., Luong, N. C., Niyato, D., Wu, Q., Zhang, Y., & Chen, B. (2022). Applications of Multi-Agent Reinforcement Learning in Future Internet: A Comprehensive Survey. IEEE Communications Surveys & Tutorials.
4.
go back to reference Wang, Y., Ye, Z., Wan, P., & Zhao, J. (2019). A survey of dynamic spectrum allocation based on reinforcement learning algorithms in cognitive radio networks. Artificial intelligence review, 51(3), 493–506. Wang, Y., Ye, Z., Wan, P., & Zhao, J. (2019). A survey of dynamic spectrum allocation based on reinforcement learning algorithms in cognitive radio networks. Artificial intelligence review, 51(3), 493–506.
5.
go back to reference Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y. & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y. & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971.
6.
go back to reference Mishra, N., Srivastava, S., & Sharan, S. N. (2021). Raddpg: Resource allocation in cognitive radio with deep reinforcement learning. In International conference on communication systems & NETworkS (COMSNETS) (pp. 589–595). Mishra, N., Srivastava, S., & Sharan, S. N. (2021). Raddpg: Resource allocation in cognitive radio with deep reinforcement learning. In International conference on communication systems & NETworkS (COMSNETS) (pp. 589–595).
7.
go back to reference Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning PMLR (pp. 1126–1135). Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning PMLR (pp. 1126–1135).
8.
go back to reference Wang, J., Hu, J., Min, G., Zomaya, A. Y., & Georgalas, N. (2020). Fast adaptive task offloading in edge computing based on meta reinforcement learning. IEEE Transactions on Parallel and Distributed Systems, 32(1), 242–253. Wang, J., Hu, J., Min, G., Zomaya, A. Y., & Georgalas, N. (2020). Fast adaptive task offloading in edge computing based on meta reinforcement learning. IEEE Transactions on Parallel and Distributed Systems, 32(1), 242–253.
9.
go back to reference Singh, J. S. P. (2022). APC: Adaptive power control technique for multi-radio multi-channel cognitive radio networks. Wireless Personal Communications, 122(4), 3603–3632.CrossRef Singh, J. S. P. (2022). APC: Adaptive power control technique for multi-radio multi-channel cognitive radio networks. Wireless Personal Communications, 122(4), 3603–3632.CrossRef
10.
go back to reference Yuan, S., Zhang, Y., Ma, T., Cheng, Z., & Guo, D. (2022). Graph convolutional reinforcement learning for resource allocation in hybrid overlay-underlay cognitive radio network with network slicing. IET Communications. Yuan, S., Zhang, Y., Ma, T., Cheng, Z., & Guo, D. (2022). Graph convolutional reinforcement learning for resource allocation in hybrid overlay-underlay cognitive radio network with network slicing. IET Communications.
11.
go back to reference Liu, S., Wu, J., & He, J. (2021). Dynamic multichannel sensing in cognitive radio: Hierarchical reinforcement learning. IEEE Access, 9, 25473–25481.CrossRef Liu, S., Wu, J., & He, J. (2021). Dynamic multichannel sensing in cognitive radio: Hierarchical reinforcement learning. IEEE Access, 9, 25473–25481.CrossRef
12.
go back to reference Giri, M. K., & Majumder, S. (2022). Deep Q-learning based optimal resource allocation method for energy harvested cognitive radio networks. Physical Communication, 101766. Giri, M. K., & Majumder, S. (2022). Deep Q-learning based optimal resource allocation method for energy harvested cognitive radio networks. Physical Communication, 101766.
13.
go back to reference Ekwe, S., Oladejo, S., Akinyemi, L., & Ventura, N. (2021) QoE-aware Q-learning resource allocation for spectrum reuse in 5G communications network. In Southern Africa telecommunication networks and applications conference (SATNAC). Ekwe, S., Oladejo, S., Akinyemi, L., & Ventura, N. (2021) QoE-aware Q-learning resource allocation for spectrum reuse in 5G communications network. In Southern Africa telecommunication networks and applications conference (SATNAC).
14.
go back to reference Zhou, S., Cheng, Y., Lei, X., & Duan, H. (2020). Deep deterministic policy gradient with prioritized sampling for power control. IEEE Access, 8, 194240–194250.CrossRef Zhou, S., Cheng, Y., Lei, X., & Duan, H. (2020). Deep deterministic policy gradient with prioritized sampling for power control. IEEE Access, 8, 194240–194250.CrossRef
15.
go back to reference Guo, S., & Zhao, X. (2022). Deep reinforcement learning optimal transmission algorithm for cognitive Internet of Things with RF energy harvesting. IEEE Transactions on Cognitive Communications and Networking. Guo, S., & Zhao, X. (2022). Deep reinforcement learning optimal transmission algorithm for cognitive Internet of Things with RF energy harvesting. IEEE Transactions on Cognitive Communications and Networking.
16.
go back to reference Liu, J., Lin, C. H. R., Hu, Y. C., & Donta, P. K. (2022). Joint beamforming, power allocation, and splitting control for SWIPT-enabled iot networks with deep reinforcement learning and game theory. Sensors, 22(6), 2328.CrossRef Liu, J., Lin, C. H. R., Hu, Y. C., & Donta, P. K. (2022). Joint beamforming, power allocation, and splitting control for SWIPT-enabled iot networks with deep reinforcement learning and game theory. Sensors, 22(6), 2328.CrossRef
17.
go back to reference Zhou, H., Erol-Kantarci, M., & Poor, V. (2022). Learning from peers: Deep transfer reinforcement learning for joint radio and cache resource allocation in 5G RAN slicing. IEEE Transactions on Cognitive Communications and Networking. Zhou, H., Erol-Kantarci, M., & Poor, V. (2022). Learning from peers: Deep transfer reinforcement learning for joint radio and cache resource allocation in 5G RAN slicing. IEEE Transactions on Cognitive Communications and Networking.
18.
go back to reference Aref, M. A., & Jayaweera, S. K. (2021). Spectrum-agile cognitive radios using multi-task transfer deep reinforcement learning. IEEE Transactions on Wireless Communications, 20(10), 6729–6742.CrossRef Aref, M. A., & Jayaweera, S. K. (2021). Spectrum-agile cognitive radios using multi-task transfer deep reinforcement learning. IEEE Transactions on Wireless Communications, 20(10), 6729–6742.CrossRef
19.
go back to reference Lu, Z., & Gursoy, M. C. (2021). Dynamic channel access via meta-reinforcement learning. IEEE Global Communications Conference (GLOBECOM), 01-06. Lu, Z., & Gursoy, M. C. (2021). Dynamic channel access via meta-reinforcement learning. IEEE Global Communications Conference (GLOBECOM), 01-06.
20.
go back to reference Nazir, M., Sabah, A., Sarwar, S., Yaseen, A., & Jurcut, A. (2021). Power and resource allocation in wireless communication network. Wireless Personal Communications, 119(4), 3529–3552.CrossRef Nazir, M., Sabah, A., Sarwar, S., Yaseen, A., & Jurcut, A. (2021). Power and resource allocation in wireless communication network. Wireless Personal Communications, 119(4), 3529–3552.CrossRef
21.
go back to reference Chen, S., Rui, L., Gao, Z., Li, W., & Qiu, X. (2022). Cache-assisted collaborative task offloading and resource allocation strategy: A meta reinforcement learning approach. IEEE Internet of Things Journal. Chen, S., Rui, L., Gao, Z., Li, W., & Qiu, X. (2022). Cache-assisted collaborative task offloading and resource allocation strategy: A meta reinforcement learning approach. IEEE Internet of Things Journal.
22.
go back to reference Shah-Mohammadi, F., & Kwasinski, A. (2020). Fast learning cognitive radios in underlay dynamic spectrum access: Integration of transfer learning into deep reinforcement learning. In IEEE Wireless Telecommunications Symposium (WTS) (pp. 1–7). Shah-Mohammadi, F., & Kwasinski, A. (2020). Fast learning cognitive radios in underlay dynamic spectrum access: Integration of transfer learning into deep reinforcement learning. In IEEE Wireless Telecommunications Symposium (WTS) (pp. 1–7).
23.
go back to reference Mohammadi, F. S., & Kwasinski, A. (2018). QoE-driven integrated heterogeneous traffic resource allocation based on cooperative learning for 5G cognitive radio networks. IEEE 5G World Forum (5GWF) 244–249. Mohammadi, F. S., & Kwasinski, A. (2018). QoE-driven integrated heterogeneous traffic resource allocation based on cooperative learning for 5G cognitive radio networks. IEEE 5G World Forum (5GWF) 244–249.
24.
go back to reference Kougioumtzidis, G., Poulkov, V., Zaharis, Z. D., & Lazaridis, P. I. (2022). A survey on multimedia services QoE assessment and machine learning-based prediction. IEEE Access, 10, 19507–19538.CrossRef Kougioumtzidis, G., Poulkov, V., Zaharis, Z. D., & Lazaridis, P. I. (2022). A survey on multimedia services QoE assessment and machine learning-based prediction. IEEE Access, 10, 19507–19538.CrossRef
25.
go back to reference Khan, S., Duhovnikov, S., Steinbach, E., & Kellerer, W. (2007). MOS-based multiuser multiapplication cross-layer optimization for mobile multimedia communication. Advances in Multimedia. Khan, S., Duhovnikov, S., Steinbach, E., & Kellerer, W. (2007). MOS-based multiuser multiapplication cross-layer optimization for mobile multimedia communication. Advances in Multimedia.
26.
go back to reference Chen, Y., Wu, K., & Zhang, Q. (2014). From QoS to QoE: A tutorial on video quality assessment. IEEE Communications Surveys & Tutorials, 17(2), 1126–1165.CrossRef Chen, Y., Wu, K., & Zhang, Q. (2014). From QoS to QoE: A tutorial on video quality assessment. IEEE Communications Surveys & Tutorials, 17(2), 1126–1165.CrossRef
27.
go back to reference Hanhart, P., & Ebrahimi, T. (2014). Calculation of average coding efficiency based on subjective quality scores. Journal of Visual Communication and Image Representation, 25(3), 555–564.CrossRef Hanhart, P., & Ebrahimi, T. (2014). Calculation of average coding efficiency based on subjective quality scores. Journal of Visual Communication and Image Representation, 25(3), 555–564.CrossRef
28.
go back to reference Tan, X., Zhou, L., Wang, H., Sun, Y., Zhao, H., Seet, B. C., & Leung, V. C. (2022). Cooperative multi-agent reinforcement learning based distributed dynamic spectrum access in cognitive radio networks. IEEE Internet of Things Journal. Tan, X., Zhou, L., Wang, H., Sun, Y., Zhao, H., Seet, B. C., & Leung, V. C. (2022). Cooperative multi-agent reinforcement learning based distributed dynamic spectrum access in cognitive radio networks. IEEE Internet of Things Journal.
29.
go back to reference Albinsaid, H., Singh, K., Biswas, S., & Li, C. P. (2021). Multi-agent reinforcement learning based distributed dynamic spectrum access. IEEE Transactions on Cognitive Communications and Networking. Albinsaid, H., Singh, K., Biswas, S., & Li, C. P. (2021). Multi-agent reinforcement learning based distributed dynamic spectrum access. IEEE Transactions on Cognitive Communications and Networking.
30.
go back to reference Zhang, T., Zhu, K., & Wang, J. (2020). Energy-efficient mode selection and resource allocation for D2D-enabled heterogeneous networks: A deep reinforcement learning approach. IEEE Transactions on Wireless Communications, 20(2), 1175–1187.CrossRef Zhang, T., Zhu, K., & Wang, J. (2020). Energy-efficient mode selection and resource allocation for D2D-enabled heterogeneous networks: A deep reinforcement learning approach. IEEE Transactions on Wireless Communications, 20(2), 1175–1187.CrossRef
31.
go back to reference Wang, X., Zhang, Y., Shen, R., Xu, Y., & Zheng, F. C. (2020). DRL-based energy-efficient resource allocation frameworks for uplink NOMA systems. IEEE Internet of Things Journal, 7(8), 7279–7294. Wang, X., Zhang, Y., Shen, R., Xu, Y., & Zheng, F. C. (2020). DRL-based energy-efficient resource allocation frameworks for uplink NOMA systems. IEEE Internet of Things Journal, 7(8), 7279–7294.
32.
go back to reference Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy gradient algorithms. International conference on machine learning (PMLR), 387–395. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy gradient algorithms. International conference on machine learning (PMLR), 387–395.
33.
go back to reference Jaiswal, R., Deshmukh, S., Elnourani, M., & Beferull-Lozano, B. (2022). Transfer learning based joint resource allocation for underlay D2D communications. In IEEE wireless communications and networking conference (WCNC) (pp. 1479–1484). Jaiswal, R., Deshmukh, S., Elnourani, M., & Beferull-Lozano, B. (2022). Transfer learning based joint resource allocation for underlay D2D communications. In IEEE wireless communications and networking conference (WCNC) (pp. 1479–1484).
34.
go back to reference Wang, X., Zhang, Y., Wu, H., Liu, T., & Xu, Y. (2022). Deep transfer reinforcement learning for resource allocation in hybrid multiple access systems. Physical Communication, 55, 101923. Wang, X., Zhang, Y., Wu, H., Liu, T., & Xu, Y. (2022). Deep transfer reinforcement learning for resource allocation in hybrid multiple access systems. Physical Communication, 55, 101923.
35.
go back to reference Zuo, G., Tian, Z., Huang, S., & Gong, D. (2021). Sample-efficient reinforcement learning based on dynamics models via meta-policy optimization. In International conference on cognitive systems and signal processing, Springer (pp. 360–373). Zuo, G., Tian, Z., Huang, S., & Gong, D. (2021). Sample-efficient reinforcement learning based on dynamics models via meta-policy optimization. In International conference on cognitive systems and signal processing, Springer (pp. 360–373).
36.
go back to reference Ding, Y., Huang, Y., Tang, L., Qin, X., & Jia, Z. (2022). Resource allocation in V2X communications based on multi-agent reinforcement learning with attention mechanism. Mathematics, 10(19), 3415. Ding, Y., Huang, Y., Tang, L., Qin, X., & Jia, Z. (2022). Resource allocation in V2X communications based on multi-agent reinforcement learning with attention mechanism. Mathematics, 10(19), 3415.
37.
go back to reference Yuan, Y., Zheng, G., Wong, K. K., & Letaief, K. B. (2021). Meta-reinforcement learning based resource allocation for dynamic V2X communications. IEEE Transactions on Vehicular Technology, 70(9), 8964–8977. Yuan, Y., Zheng, G., Wong, K. K., & Letaief, K. B. (2021). Meta-reinforcement learning based resource allocation for dynamic V2X communications. IEEE Transactions on Vehicular Technology, 70(9), 8964–8977.
38.
go back to reference Yang, H., Zhao, J., Lam, K. Y., Xiong, Z., Wu, Q., & Xiao, L. (2022). Distributed deep reinforcement learning based spectrum and power allocation for heterogeneous networks. IEEE Transactions on Wireless Communications. Yang, H., Zhao, J., Lam, K. Y., Xiong, Z., Wu, Q., & Xiao, L. (2022). Distributed deep reinforcement learning based spectrum and power allocation for heterogeneous networks. IEEE Transactions on Wireless Communications.
39.
go back to reference Alwarafy, A., Ciftler, B. S., Abdallah, M., Hamdi, M., & Al-Dhahir, N. (2022). Hierarchical multi-agent DRL-based framework for joint multi-rat assignment and dynamic resource allocation in next-generation hetnets. IEEE Transactions on Network Science and Engineering. Alwarafy, A., Ciftler, B. S., Abdallah, M., Hamdi, M., & Al-Dhahir, N. (2022). Hierarchical multi-agent DRL-based framework for joint multi-rat assignment and dynamic resource allocation in next-generation hetnets. IEEE Transactions on Network Science and Engineering.
40.
go back to reference He, Y., Wang, Y., Lin, Q., & Li, J. (2022). Meta-hierarchical reinforcement learning (MHRL)-based dynamic resource allocation for dynamic vehicular networks. IEEE Transactions on Vehicular Technology, 71(4), 3495–3506.CrossRef He, Y., Wang, Y., Lin, Q., & Li, J. (2022). Meta-hierarchical reinforcement learning (MHRL)-based dynamic resource allocation for dynamic vehicular networks. IEEE Transactions on Vehicular Technology, 71(4), 3495–3506.CrossRef
41.
go back to reference Park, S., Simeone, O., & Kang, J. (2020). Meta-learning to communicate: Fast end-to-end training for fading channels. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5075–5079). Park, S., Simeone, O., & Kang, J. (2020). Meta-learning to communicate: Fast end-to-end training for fading channels. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 5075–5079).
Metadata
Title
DDPG with Transfer Learning and Meta Learning Framework for Resource Allocation in Underlay Cognitive Radio Network
Authors
Nikita Mishra
Sumit Srivastava
Shivendra Nath Sharan
Publication date
16-03-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10307-5

Other articles of this Issue 2/2023

Wireless Personal Communications 2/2023 Go to the issue