Skip to main content
Top

2018 | OriginalPaper | Chapter

Deep Expander Networks: Efficient Deep Networks from Graph Theory

Authors : Ameya Prabhu, Girish Varma, Anoop Namboodiri

Published in: Computer Vision – ECCV 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Efficient CNN designs like ResNets and DenseNet were proposed to improve accuracy vs efficiency trade-offs. They essentially increased the connectivity, allowing efficient information flow across layers. Inspired by these techniques, we propose to model connections between filters of a CNN using graphs which are simultaneously sparse and well connected. Sparsity results in efficiency while well connectedness can preserve the expressive power of the CNNs. We use a well-studied class of graphs from theoretical computer science that satisfies these properties known as Expander graphs. Expander graphs are used to model connections between filters in CNNs to design networks called X-Nets. We present two guarantees on the connectivity of X-Nets: Each node influences every node in a layer in logarithmic steps, and the number of paths between two sets of nodes is proportional to the product of their sizes. We also propose efficient training and inference algorithms, making it possible to train deeper and wider X-Nets effectively.
Expander based models give a \(4\%\) improvement in accuracy on MobileNet over grouped convolutions, a popular technique, which has the same sparsity but worse connectivity. X-Nets give better performance trade-offs than the original ResNet and DenseNet-BC architectures. We achieve model sizes comparable to state-of-the-art pruning techniques using our simple architecture design, without any pruning. We hope that this work motivates other approaches to utilize results from graph theory to develop efficient network architectures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
3.
go back to reference Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: CVPR (2017) Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: CVPR (2017)
4.
go back to reference Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9, June 2015 Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9, June 2015
5.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
6.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, June 2016 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, June 2016
7.
go back to reference Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint: arXiv:1704.04861 Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint: arXiv:​1704.​04861
8.
go back to reference Spielman, D.A.: Spectral graph theory and its applications. In: FOCS 2007, pp. 29–38, October 2007 Spielman, D.A.: Spectral graph theory and its applications. In: FOCS 2007, pp. 29–38, October 2007
10.
go back to reference Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)MathSciNetCrossRef Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)MathSciNetCrossRef
11.
go back to reference Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5mb model size. In: ICLR (2017) Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5mb model size. In: ICLR (2017)
13.
go back to reference Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search (2017). arXiv preprint: arXiv:1711.00436 Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search (2017). arXiv preprint: arXiv:​1711.​00436
14.
go back to reference Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition (2017). arXiv preprint: arXiv:1707.07012 Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition (2017). arXiv preprint: arXiv:​1707.​07012
17.
go back to reference Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017) Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)
18.
go back to reference Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices (2017). arXiv preprint: arXiv:1707.01083 Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices (2017). arXiv preprint: arXiv:​1707.​01083
19.
go back to reference Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation (2018). arXiv preprint: arXiv:1801.04381 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation (2018). arXiv preprint: arXiv:​1801.​04381
20.
go back to reference Huang, G., Liu, S., van der Maaten, L., Weinberger, K.Q.: Condensenet: an efficient densenet using learned group convolutions (2017). arXiv preprint: arXiv:1711.09224 Huang, G., Liu, S., van der Maaten, L., Weinberger, K.Q.: Condensenet: an efficient densenet using learned group convolutions (2017). arXiv preprint: arXiv:​1711.​09224
21.
go back to reference Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995. IEEE (2017) Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995. IEEE (2017)
22.
go back to reference Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B.: Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: ICASSP, pp. 6655–6659. IEEE (2013) Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B.: Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: ICASSP, pp. 6655–6659. IEEE (2013)
23.
go back to reference Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural networks. In: NIPS, pp. 442–450 (2015) Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural networks. In: NIPS, pp. 442–450 (2015)
24.
go back to reference Masana, M., van de Weijer, J., Herranz, L., Bagdanov, A.D., Malvarez, J.: Domain-adaptive deep network compression. Network 16, 30 (2017) Masana, M., van de Weijer, J., Herranz, L., Bagdanov, A.D., Malvarez, J.: Domain-adaptive deep network compression. Network 16, 30 (2017)
25.
go back to reference Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. In: ICML (2015) Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. In: ICML (2015)
26.
go back to reference Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional neural networks. In: CVPR, pp. 806–814 (2015) Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional neural networks. In: CVPR, pp. 806–814 (2015)
27.
go back to reference He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: CVPR (2017) He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: CVPR (2017)
28.
go back to reference Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: ICLR (2017) Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: ICLR (2017)
30.
go back to reference Courbariaux, M., Bengio, Y.: Binarynet: training deep neural networks with weights and activations constrained to +1 or \(-\)1. In: ICML (2016) Courbariaux, M., Bengio, Y.: Binarynet: training deep neural networks with weights and activations constrained to +1 or \(-\)1. In: ICML (2016)
31.
go back to reference Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: ICLR (2016) Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. In: ICLR (2016)
32.
go back to reference Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: CVPR, pp. 4820–4828 (2016) Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: CVPR, pp. 4820–4828 (2016)
33.
go back to reference Bagherinezhad, H., Rastegari, M., Farhadi, A.: LCNN: Lookup-based convolutional neural network. In: CVPR (2017) Bagherinezhad, H., Rastegari, M., Farhadi, A.: LCNN: Lookup-based convolutional neural network. In: CVPR (2017)
34.
go back to reference Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. In: ICLR (2017) Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. In: ICLR (2017)
35.
go back to reference Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients. In: ICLR (2016) Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients. In: ICLR (2016)
36.
go back to reference Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: NIPS, pp. 2074–2082 (2016) Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: NIPS, pp. 2074–2082 (2016)
37.
go back to reference Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. In: ICLR (2017) Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. In: ICLR (2017)
38.
go back to reference Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In: CVPR, pp. 2554–2564 (2016) Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In: CVPR, pp. 2554–2564 (2016)
39.
go back to reference Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for deep neural networks. Neurocomputing 241, 81–89 (2017)CrossRef Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for deep neural networks. Neurocomputing 241, 81–89 (2017)CrossRef
40.
go back to reference Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks. In: BMVC (2015) Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks. In: BMVC (2015)
41.
go back to reference Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In: NIPS, pp. 1379–1387 (2016) Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In: NIPS, pp. 1379–1387 (2016)
42.
go back to reference Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: ICCV (2017) Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: ICCV (2017)
43.
go back to reference Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: ICML, pp. 2285–2294 (2015) Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: ICML, pp. 2285–2294 (2015)
44.
go back to reference Srinivas, S., Subramanya, A., Babu, R.V.: Training sparse neural networks. In: CVPRW, pp. 455–462. IEEE (2017) Srinivas, S., Subramanya, A., Babu, R.V.: Training sparse neural networks. In: CVPRW, pp. 455–462. IEEE (2017)
46.
go back to reference Yoon, J., Hwang, S.J.: Combined group and exclusive sparsity for deep neural networks. In: ICML, pp. 3958–3966 (2017) Yoon, J., Hwang, S.J.: Combined group and exclusive sparsity for deep neural networks. In: ICML, pp. 3958–3966 (2017)
47.
go back to reference He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: CVPR, pp. 5353–5360. IEEE (2015) He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: CVPR, pp. 5353–5360. IEEE (2015)
48.
go back to reference Krizhevsky, A.: Cuda-convnet: high-performance C++/CUDA implementation of convolutional neural networks (2012) Krizhevsky, A.: Cuda-convnet: high-performance C++/CUDA implementation of convolutional neural networks (2012)
50.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255. IEEE (2009) Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR 2009, pp. 248–255. IEEE (2009)
51.
go back to reference Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009) Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
Metadata
Title
Deep Expander Networks: Efficient Deep Networks from Graph Theory
Authors
Ameya Prabhu
Girish Varma
Anoop Namboodiri
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01261-8_2

Premium Partner