Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

Group Normalization

Authors : Yuxin Wu, Kaiming He

Published in: Computer Vision – ECCV 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Batch Normalization (BN) is a milestone technique in the development of deep learning, enabling various networks to train. However, normalizing along the batch dimension introduces problems—BN’s error increases rapidly when the batch size becomes smaller, caused by inaccurate batch statistics estimation. This limits BN’s usage for training larger models and transferring features to computer vision tasks including detection, segmentation, and video, which require small batches constrained by memory consumption. In this paper, we present Group Normalization (GN) as a simple alternative to BN. GN divides the channels into groups and computes within each group the mean and variance for normalization. GN’s computation is independent of batch sizes, and its accuracy is stable in a wide range of batch sizes. On ResNet-50 trained in ImageNet, GN has 10.6% lower error than its BN counterpart when using a batch size of 2; when using typical batch sizes, GN is comparably good with BN and outperforms other normalization variants. Moreover, GN can be naturally transferred from pre-training to fine-tuning. GN can outperform its BN-based counterparts for object detection and segmentation in COCO, and for video classification in Kinetics, showing that GN can effectively replace the powerful BN in a variety of tasks. GN can be easily implemented by a few lines of code.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In the context of this paper, we use “batch size” to refer to the number of samples per worker (e.g., GPU). BN’s statistics are computed for each worker, but not broadcast across workers, as is standard in many libraries.
 
2
Detectron [59] uses pre-trained models provided by the authors of [3]. For fair comparisons, we instead use the models pre-trained in this paper. The object detection and segmentation accuracy is statistically similar between these pre-trained models.
 
Literature
1.
go back to reference Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015) Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)
2.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
3.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
4.
go back to reference Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)CrossRef Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)CrossRef
5.
go back to reference Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: ICLR Workshop (2016) Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: ICLR Workshop (2016)
6.
go back to reference Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017) Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)
7.
go back to reference Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017) Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)
8.
9.
go back to reference Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015) Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
10.
go back to reference He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017) He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
11.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
12.
go back to reference Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015) Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV (2015)
13.
go back to reference Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017) Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)
15.
go back to reference Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005) Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
16.
go back to reference Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. In: IJCV (2015) Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. In: IJCV (2015)
18.
19.
go back to reference Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: NIPS (2016) Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: NIPS (2016)
22.
go back to reference Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRef Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRef
23.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
24.
go back to reference Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014) Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
25.
go back to reference Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017) Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
26.
go back to reference Lyu, S., Simoncelli, E.P.: Nonlinear image representation using divisive normalization. In: CVPR (2008) Lyu, S., Simoncelli, E.P.: Nonlinear image representation using divisive normalization. In: CVPR (2008)
27.
go back to reference Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: ICCV (2009) Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: ICCV (2009)
28.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
30.
go back to reference Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. In: ICLR (2014) Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. In: ICLR (2014)
31.
go back to reference Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015) Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
32.
go back to reference Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. In: NIPS (2017) Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. In: NIPS (2017)
33.
go back to reference Arpit, D., Zhou, Y., Kota, B., Govindaraju, V.: Normalization propagation: a parametric technique for removing internal covariate shift in deep networks. In: ICML (2016) Arpit, D., Zhou, Y., Kota, B., Govindaraju, V.: Normalization propagation: a parametric technique for removing internal covariate shift in deep networks. In: ICML (2016)
34.
go back to reference Ren, M., Liao, R., Urtasun, R., Sinz, F.H., Zemel, R.S.: Normalizing the normalizers: comparing and extending network normalization schemes. In: ICLR (2017) Ren, M., Liao, R., Urtasun, R., Sinz, F.H., Zemel, R.S.: Normalizing the normalizers: comparing and extending network normalization schemes. In: ICLR (2017)
35.
go back to reference Ioffe, S.: Batch renormalization: towards reducing minibatch dependence in batch-normalized models. In: NIPS (2017) Ioffe, S.: Batch renormalization: towards reducing minibatch dependence in batch-normalized models. In: NIPS (2017)
36.
go back to reference Peng, C., et al.: MegDet: a large mini-batch object detector. In: CVPR (2018) Peng, C., et al.: MegDet: a large mini-batch object detector. In: CVPR (2018)
37.
go back to reference Dean, J., et al.: Large scale distributed deep networks. In: NIPS (2012) Dean, J., et al.: Large scale distributed deep networks. In: NIPS (2012)
38.
39.
go back to reference Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017) Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)
40.
go back to reference Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018) Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018)
41.
go back to reference Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. In: IJCV (2001) Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. In: IJCV (2001)
42.
go back to reference Jegou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a compact image representation. In: CVPR (2010) Jegou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a compact image representation. In: CVPR (2010)
43.
go back to reference Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007) Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)
44.
go back to reference Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. In: ICML (2016) Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. In: ICML (2016)
45.
go back to reference Cohen, T., Welling, M.: Group equivariant convolutional networks. In: ICML (2016) Cohen, T., Welling, M.: Group equivariant convolutional networks. In: ICML (2016)
46.
47.
go back to reference Schwartz, O., Simoncelli, E.P.: Natural signal statistics and sensory gain control. Nat. Neurosci. 4(8), 819 (2001)CrossRef Schwartz, O., Simoncelli, E.P.: Natural signal statistics and sensory gain control. Nat. Neurosci. 4(8), 819 (2001)CrossRef
48.
go back to reference Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Ann. Rev. Neurosci. 24(1), 1193–1216 (2001)CrossRef Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Ann. Rev. Neurosci. 24(1), 1193–1216 (2001)CrossRef
49.
go back to reference Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13(1), 51 (2012)CrossRef Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13(1), 51 (2012)CrossRef
50.
go back to reference Paszke, A., et al.: Automatic differentiation in pytorch (2017) Paszke, A., et al.: Automatic differentiation in pytorch (2017)
51.
go back to reference Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Operating Systems Design and Implementation (OSDI) (2016) Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Operating Systems Design and Implementation (OSDI) (2016)
53.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV (2015) He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV (2015)
57.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
58.
go back to reference Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017) Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)
60.
go back to reference Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017) Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)
61.
go back to reference Ren, S., He, K., Girshick, R., Zhang, X., Sun, J.: Object detection networks on convolutional feature maps. TPAMI 39(7), 1476–1481 (2017)CrossRef Ren, S., He, K., Girshick, R., Zhang, X., Sun, J.: Object detection networks on convolutional feature maps. TPAMI 39(7), 1476–1481 (2017)CrossRef
62.
63.
go back to reference Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018) Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)
Metadata
Title
Group Normalization
Authors
Yuxin Wu
Kaiming He
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01261-8_1

Premium Partner