Skip to main content
Top

2019 | OriginalPaper | Chapter

8.  Deep Learning and Deep Knowledge Representation of EEG Data

Author : Nikola K. Kasabov

Published in: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents general methods for deep learning and deep knowledge representation of EEG data in brain-inspired SNN (BI-SNN). These methods are applied to develop specific methods for EEG data analysis and for modelling brain cognitive functions, such as: performing cognitive tasks; emotion recognition from face expression; sub-conscious processing of stimuli; modelling attentional bias.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference A. Toga, P. Thompson, S. Mori, K. Amunts, K. Zilles, Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 7, 952–966 (2006)CrossRef A. Toga, P. Thompson, S. Mori, K. Amunts, K. Zilles, Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 7, 952–966 (2006)CrossRef
2.
go back to reference E. Niedermeyer, F.H. L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, Philadelphia, 2005), 1309p E. Niedermeyer, F.H. L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, Philadelphia, 2005), 1309p
3.
go back to reference D.A. Craig, H.T. Nguyen, Adaptive EEG Thought Pattern Classifier for Advanced Wheelchair Control, in International Conference of the IEEE Engineering in Medical and Biology Society (2007), pp. 2544–2547 D.A. Craig, H.T. Nguyen, Adaptive EEG Thought Pattern Classifier for Advanced Wheelchair Control, in International Conference of the IEEE Engineering in Medical and Biology Society (2007), pp. 2544–2547
4.
go back to reference F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B.A. Arnaldi, Review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R15 (2007)CrossRef F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B.A. Arnaldi, Review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R15 (2007)CrossRef
5.
go back to reference R.C. deCharms, Application of real-time fMRI. Nat. Rev. Neurosci. 9(9), 720–729 (2008) R.C. deCharms, Application of real-time fMRI. Nat. Rev. Neurosci. 9(9), 720–729 (2008)
6.
go back to reference T. Mitchel et al., Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)MATHCrossRef T. Mitchel et al., Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)MATHCrossRef
7.
go back to reference K. Broderson et al., Generative embedding for model-based classification of fMRI Data. PLoS Comput. Biol. 7(6), 1–19 (2011)MathSciNet K. Broderson et al., Generative embedding for model-based classification of fMRI Data. PLoS Comput. Biol. 7(6), 1–19 (2011)MathSciNet
8.
go back to reference K. Broderson et al., Decoding the perception of pain from fMRI using multivariate pattern analysis. NeuroImage 63, 1162–1170 (2012)CrossRef K. Broderson et al., Decoding the perception of pain from fMRI using multivariate pattern analysis. NeuroImage 63, 1162–1170 (2012)CrossRef
9.
go back to reference K. Zilles, K. Amunts, Centenary of Brodmann’s map—conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)CrossRef K. Zilles, K. Amunts, Centenary of Brodmann’s map—conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)CrossRef
10.
go back to reference S. Eickhoff et al., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)CrossRef S. Eickhoff et al., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)CrossRef
11.
go back to reference J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of The Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, 1988) J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of The Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, 1988)
12.
go back to reference J. Lancaster et al., Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)CrossRef J. Lancaster et al., Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)CrossRef
13.
go back to reference A.C. Evans, D.L. Collins, S.R. Mills, E.D. Brown, R.L. Kelly, T.M. Peters, 3D Statistical Neuroanatomical Models from 305 MRI Volumes, in IEEE-Nuclear Science Symposium and Medical Imaging Conference (IEEE Press, 1993), pp. 1813–1817 A.C. Evans, D.L. Collins, S.R. Mills, E.D. Brown, R.L. Kelly, T.M. Peters, 3D Statistical Neuroanatomical Models from 305 MRI Volumes, in IEEE-Nuclear Science Symposium and Medical Imaging Conference (IEEE Press, 1993), pp. 1813–1817
14.
go back to reference J. Ashburner, Computational anatomy with the SPM software. Magn. Reson. Imaging 27(8), 1163–1174 (2009)CrossRef J. Ashburner, Computational anatomy with the SPM software. Magn. Reson. Imaging 27(8), 1163–1174 (2009)CrossRef
15.
go back to reference L. Benuskova, N. Kasabov, Computational Neuro-genetic Modelling (Springer, New York, 2007), p. 290 L. Benuskova, N. Kasabov, Computational Neuro-genetic Modelling (Springer, New York, 2007), p. 290
16.
go back to reference M. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)CrossRef M. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)CrossRef
17.
go back to reference W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)CrossRef W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)CrossRef
18.
go back to reference C. Koch, R. Reid, Neuroscience: observation of the mind. Nature 483(7390), 397–398 (2012)CrossRef C. Koch, R. Reid, Neuroscience: observation of the mind. Nature 483(7390), 397–398 (2012)CrossRef
20.
go back to reference Van Essen et al., The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRef Van Essen et al., The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRef
21.
go back to reference H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)CrossRef H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)CrossRef
22.
go back to reference E.M. Izhikevich, G.M. Edelman, Large-scale model of mammalian thalamocortical systems. PNAS 105, 3593–3598 (2008)CrossRef E.M. Izhikevich, G.M. Edelman, Large-scale model of mammalian thalamocortical systems. PNAS 105, 3593–3598 (2008)CrossRef
23.
go back to reference S. Song, K. Miller, L. Abbott et al., Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)CrossRef S. Song, K. Miller, L. Abbott et al., Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)CrossRef
24.
go back to reference N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)CrossRef N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)CrossRef
25.
go back to reference M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)CrossRef M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)CrossRef
26.
go back to reference M.G. Doborjeh, Y. Wang, N. Kasabov, R. Kydd, B. Russell, A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans. Biomed. Eng. 63(9), 1830–1841 (2016) M.G. Doborjeh, Y. Wang, N. Kasabov, R. Kydd, B. Russell, A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans. Biomed. Eng. 63(9), 1830–1841 (2016)
27.
go back to reference M. Doborjeh, N. Kasabov, Z.G. Doborjeh, Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data. Evolving Syst. 1–17 (2017). https://doi.org/10.1007/s12530-017-9178-8 M. Doborjeh, N. Kasabov, Z.G. Doborjeh, Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data. Evolving Syst. 1–17 (2017). https://​doi.​org/​10.​1007/​s12530-017-9178-8
28.
go back to reference N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf. Sci. 294, 565–575 (2014). https://doi.org/10.1016/j.ins.2014.06.028 N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf. Sci. 294, 565–575 (2014). https://​doi.​org/​10.​1016/​j.​ins.​2014.​06.​028
29.
go back to reference K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, On-line Spatiotemporal Pattern Recognition with Evolving Spiking Neural Networks Utilizing Address Event Representation, Rank Oder and Temporal Spike Learning, in Proceedings of WCCI 2012 (IEEE Press, 2012), pp. 554–560 K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, On-line Spatiotemporal Pattern Recognition with Evolving Spiking Neural Networks Utilizing Address Event Representation, Rank Oder and Temporal Spike Learning, in Proceedings of WCCI 2012 (IEEE Press, 2012), pp. 554–560
30.
go back to reference W. Gerstner, What’s different with spiking neurons?, in Plausible Neural Networks for Biological Modelling, ed. by H. Mastebroek, H. Vos (Kluwer Academic Publishers, Dordrecht, 2001), pp. 23–48 W. Gerstner, What’s different with spiking neurons?, in Plausible Neural Networks for Biological Modelling, ed. by H. Mastebroek, H. Vos (Kluwer Academic Publishers, Dordrecht, 2001), pp. 23–48
31.
go back to reference G, Indiveri, B. Linares-Barranco, T. Hamilton, A. Van Schaik, R. Etienne-Cummings, T. Delbruck, S. Liu, P. Dudek, P. Hafliger, S. Renaud et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5 (2011) G, Indiveri, B. Linares-Barranco, T. Hamilton, A. Van Schaik, R. Etienne-Cummings, T. Delbruck, S. Liu, P. Dudek, P. Hafliger, S. Renaud et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5 (2011)
32.
go back to reference N. Scott, N. Kasabov, G. Indiveri, NeuCube Neuromorphic Framework for Spatio-Temporal Brain Data and Its Python Implementation, in Proceedings of ICONIP 2013. LNCS, vol. 8228 (Springer, Berlin, 2013), pp.78-84 N. Scott, N. Kasabov, G. Indiveri, NeuCube Neuromorphic Framework for Spatio-Temporal Brain Data and Its Python Implementation, in Proceedings of ICONIP 2013. LNCS, vol. 8228 (Springer, Berlin, 2013), pp.78-84
33.
go back to reference N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52, 62–76 (2014)CrossRef N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52, 62–76 (2014)CrossRef
34.
go back to reference L. Koessler, L. Maillard, A. Benhadid et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage 46, 64–72 (2009)CrossRef L. Koessler, L. Maillard, A. Benhadid et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage 46, 64–72 (2009)CrossRef
35.
go back to reference S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119 (1998)CrossRef S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119 (1998)CrossRef
37.
go back to reference Z. K. Keirn, in Alternative modes of communication between man and machine. Master’s Thesis, Electrical Engineering Department, Purdue University, USA Z. K. Keirn, in Alternative modes of communication between man and machine. Master’s Thesis, Electrical Engineering Department, Purdue University, USA
38.
go back to reference Z.A. Keirn, J.I. Aunon, A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37(12), 1209–1214 (1990)CrossRef Z.A. Keirn, J.I. Aunon, A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37(12), 1209–1214 (1990)CrossRef
39.
go back to reference C. Anderson, D. Peterson, Recent advances in EEG signal analysis and classification, in Clinical Applications of Artificial Neural Networks, ed. by R. Dybowski, V. Gant (Cambridge University Press, Cambridge, 2001), pp. 175–191 C. Anderson, D. Peterson, Recent advances in EEG signal analysis and classification, in Clinical Applications of Artificial Neural Networks, ed. by R. Dybowski, V. Gant (Cambridge University Press, Cambridge, 2001), pp. 175–191
40.
go back to reference C. Anderson, Z. Sijercic, Classification of EEG Signals from Four Subjects During Five Mental Tasks, in Solving Engineering Problems with Neural Networks: Proceedings of Conference on Engineering Applications in Neural Networks (EANN’96), ed. by A.B. Bulsari, S. Kallio, D. Tsaptsinos (Systems Engineering Association, PL 34, FIN-20111 Turku 11, Finland, 1996), pp. 407–414 C. Anderson, Z. Sijercic, Classification of EEG Signals from Four Subjects During Five Mental Tasks, in Solving Engineering Problems with Neural Networks: Proceedings of Conference on Engineering Applications in Neural Networks (EANN’96), ed. by A.B. Bulsari, S. Kallio, D. Tsaptsinos (Systems Engineering Association, PL 34, FIN-20111 Turku 11, Finland, 1996), pp. 407–414
41.
go back to reference L. Nan-Ying et al., Classification of mental tasks from EEG signals using extreme learning machine. Int. J. Neural Syst. 16(01), 29–38 (2006)CrossRef L. Nan-Ying et al., Classification of mental tasks from EEG signals using extreme learning machine. Int. J. Neural Syst. 16(01), 29–38 (2006)CrossRef
42.
go back to reference N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London, 2007) (first edition 2002) N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London, 2007) (first edition 2002)
43.
go back to reference H. Kawano, A. Seo, Z. Gholami, N. Kasabov, M.G. Doborjeh, Analysis of Similarity and Differences in Brain Activities between Perception and Production of Facial Expressions Using EEG Data and the NeuCube Spiking Neural Network Architecture, in ICONIP, Kyoto. LNCS (Springer, Bernin, 2016) H. Kawano, A. Seo, Z. Gholami, N. Kasabov, M.G. Doborjeh, Analysis of Similarity and Differences in Brain Activities between Perception and Production of Facial Expressions Using EEG Data and the NeuCube Spiking Neural Network Architecture, in ICONIP, Kyoto. LNCS (Springer, Bernin, 2016)
44.
go back to reference V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in the premotor cortex. Brain 119, 593–609 (1996) V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in the premotor cortex. Brain 119, 593–609 (1996)
45.
go back to reference M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, G. Rizzolatti, Cortical mechanisms of human imitation. Science 286(5449), 2526–2528 (1999) M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, G. Rizzolatti, Cortical mechanisms of human imitation. Science 286(5449), 2526–2528 (1999)
46.
go back to reference E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling and understanding of stream data. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2016) E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling and understanding of stream data. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2016)
47.
go back to reference N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78(2016), 1–14 (2016)CrossRef N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78(2016), 1–14 (2016)CrossRef
48.
go back to reference M.G. Doborjeh, E. Capecci, N. Kasabov, Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a Neucube Evolving Spiking Neural Network Model, in Analysis of Similarity and Differences in Brain Activities. IEEE SSCI, Orlando, USA (2014), pp. 227–228 M.G. Doborjeh, E. Capecci, N. Kasabov, Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a Neucube Evolving Spiking Neural Network Model, in Analysis of Similarity and Differences in Brain Activities. IEEE SSCI, Orlando, USA (2014), pp. 227–228
49.
go back to reference M.G. Doborjeh, N. Kasabov, Dynamic 3D Clustering of Spatio-temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data, in Neural Information Processing, Istanbul (2015) M.G. Doborjeh, N. Kasabov, Dynamic 3D Clustering of Spatio-temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data, in Neural Information Processing, Istanbul (2015)
50.
go back to reference D. Matsumoto, P. Ekman, in Japanese, caucasian facial expressions of emotion (JACFEE) [Slides]. Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University, San Francisco (1988) D. Matsumoto, P. Ekman, in Japanese, caucasian facial expressions of emotion (JACFEE) [Slides]. Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University, San Francisco (1988)
51.
go back to reference K.M. Alfano, C.R. Cimino, Alteration of expected hemispheric asymmetries: valence and arousal effects in neuropsychological models of emotion. Brain Cogn. 66, 213–220 (2008) K.M. Alfano, C.R. Cimino, Alteration of expected hemispheric asymmetries: valence and arousal effects in neuropsychological models of emotion. Brain Cogn. 66, 213–220 (2008)
53.
go back to reference S. Venkataraman, S.D. Sarasvathy, N. Dew, W.R. Forster, Reflections on the 2010 AMR decade award: whither the promise? Moving forward with entrepreneurship as a science of the artificial. Acad. Manage. Rev. 37, 21–33 (2012) S. Venkataraman, S.D. Sarasvathy, N. Dew, W.R. Forster, Reflections on the 2010 AMR decade award: whither the promise? Moving forward with entrepreneurship as a science of the artificial. Acad. Manage. Rev. 37, 21–33 (2012)
54.
go back to reference Z.O. Touhami, L. Benlafkih, M. Jiddane, Y. Cherrah, O. Malki, A. Benomar, Neuromarketing: where marketing and neuroscience meet. Afr. J. Bus. Manage. 5(5), 1528–1532 (2011). https://doi.org/10.5897/AJBM10.729CrossRef Z.O. Touhami, L. Benlafkih, M. Jiddane, Y. Cherrah, O. Malki, A. Benomar, Neuromarketing: where marketing and neuroscience meet. Afr. J. Bus. Manage. 5(5), 1528–1532 (2011). https://​doi.​org/​10.​5897/​AJBM10.​729CrossRef
55.
go back to reference S.M. McClure, J. Li, D. Tomlin, K.S. Cypert, L.M. Montague, P.R. Montague, Neural correlates of behavioural preference for culturally familiar drinks. Neuron 44, 379–387 (2004)CrossRef S.M. McClure, J. Li, D. Tomlin, K.S. Cypert, L.M. Montague, P.R. Montague, Neural correlates of behavioural preference for culturally familiar drinks. Neuron 44, 379–387 (2004)CrossRef
56.
go back to reference M. Schaefer, H. Berens, H.J. Heinz, M. Rotte, Neural correlates of culturally familiar brands of car manufacturers. Neuroimage 31(2), 861–865 (2006)CrossRef M. Schaefer, H. Berens, H.J. Heinz, M. Rotte, Neural correlates of culturally familiar brands of car manufacturers. Neuroimage 31(2), 861–865 (2006)CrossRef
57.
go back to reference H. Walter, B. Abler, A. Ciaramidaro, S. Erk, Motivating forces of human actions. Neuroimaging reward and social interaction. Brain Res. Bull. 15(5), 368–381 (2005) H. Walter, B. Abler, A. Ciaramidaro, S. Erk, Motivating forces of human actions. Neuroimaging reward and social interaction. Brain Res. Bull. 15(5), 368–381 (2005)
58.
go back to reference A.R. Damasio, The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1413–1420 (1996)CrossRef A.R. Damasio, The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1413–1420 (1996)CrossRef
59.
go back to reference N. Lee, A.J. Broderick, L. Chamberlain, What is neuromarketing? A discussion and agenda for future research. Int. J. Psychophysiol. 63, 199–204 (2007)CrossRef N. Lee, A.J. Broderick, L. Chamberlain, What is neuromarketing? A discussion and agenda for future research. Int. J. Psychophysiol. 63, 199–204 (2007)CrossRef
60.
go back to reference A. Morin, Self-awareness part 1: definition, measures, effects, functions, and antecedents. J. Theor. Social Psychol. 5(10), 807–823 (2011) A. Morin, Self-awareness part 1: definition, measures, effects, functions, and antecedents. J. Theor. Social Psychol. 5(10), 807–823 (2011)
61.
go back to reference C. Oreja-Guevara, Neuromarketing. Neurologia Supl. 5(1), 4–7 (2009) C. Oreja-Guevara, Neuromarketing. Neurologia Supl. 5(1), 4–7 (2009)
62.
go back to reference C.S. Crandall, Psychophysical scaling of stressful life events. Psychol. Sci. 3, 256–258 (1992)CrossRef C.S. Crandall, Psychophysical scaling of stressful life events. Psychol. Sci. 3, 256–258 (1992)CrossRef
63.
go back to reference D. Labbe, N. Pineau, N. Martin, Measuring consumer response to complex precision: scaling vs. categorization task. Food Quality Prefer. 23(2), 134–137 (2012) D. Labbe, N. Pineau, N. Martin, Measuring consumer response to complex precision: scaling vs. categorization task. Food Quality Prefer. 23(2), 134–137 (2012)
64.
go back to reference J. Hu, Z.G. Hou, Y.X. Chen, N. Kasabov, N. Scott, EEG-Based Classification of Upper-limb ADL Using SNN for Active Robotic Rehabilation, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BooRob), Sao Paulo, Brazil (2014), 409–414 J. Hu, Z.G. Hou, Y.X. Chen, N. Kasabov, N. Scott, EEG-Based Classification of Upper-limb ADL Using SNN for Active Robotic Rehabilation, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BooRob), Sao Paulo, Brazil (2014), 409–414
65.
go back to reference N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://dx.doi.org/10.1016/j.neunet.2015.09.011 N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://​dx.​doi.​org/​10.​1016/​j.​neunet.​2015.​09.​011
66.
go back to reference E. Capecci, Z. Doborjeh, N. Mammone, F. La Foresta, F.C. Morabito, N. Kasabov, Longitudinal Study of Alzheimer’s Disease Degeneration through EEG Data Analysis with a NeuCube Spiking Neural Network Model, in Proceedings of WCCI—IJCNN 2016, Vancouver, 24–29 July 2016 (IEEE Press, 2016), pp. 1360–1366 E. Capecci, Z. Doborjeh, N. Mammone, F. La Foresta, F.C. Morabito, N. Kasabov, Longitudinal Study of Alzheimer’s Disease Degeneration through EEG Data Analysis with a NeuCube Spiking Neural Network Model, in Proceedings of WCCI—IJCNN 2016, Vancouver, 24–29 July 2016 (IEEE Press, 2016), pp. 1360–1366
67.
go back to reference Z.G. Doborjeh, M.G. Doborjeh, N. Kasabov, Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cognitive Comput. 10, 35–48 (2018). https://doi.10.1007/s12559-017-9517-x Z.G. Doborjeh, M.G. Doborjeh, N. Kasabov, Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cognitive Comput. 10, 35–48 (2018). https://​doi.​10.​1007/​s12559-017-9517-x
68.
go back to reference N.Kasabov (ed.), Springer Handbook of Bio-Neuroinformatics (Springer, Berlin, 2014) N.Kasabov (ed.), Springer Handbook of Bio-Neuroinformatics (Springer, Berlin, 2014)
70.
go back to reference American Electroencephalographic Society, American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8(2), 200–202 (1991)CrossRef American Electroencephalographic Society, American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8(2), 200–202 (1991)CrossRef
71.
go back to reference G.H. Klem, H.O. Lüders, H. Jasper, C. Elger, The ten-twenty electrode system of the International Federation. Electroencephalogram Clin. Neurophysiol. 52, 3 (1999) G.H. Klem, H.O. Lüders, H. Jasper, C. Elger, The ten-twenty electrode system of the International Federation. Electroencephalogram Clin. Neurophysiol. 52, 3 (1999)
Metadata
Title
Deep Learning and Deep Knowledge Representation of EEG Data
Author
Nikola K. Kasabov
Copyright Year
2019
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-57715-8_8

Premium Partner