Skip to main content

2019 | OriginalPaper | Buchkapitel

8.  Deep Learning and Deep Knowledge Representation of EEG Data

verfasst von : Nikola K. Kasabov

Erschienen in: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents general methods for deep learning and deep knowledge representation of EEG data in brain-inspired SNN (BI-SNN). These methods are applied to develop specific methods for EEG data analysis and for modelling brain cognitive functions, such as: performing cognitive tasks; emotion recognition from face expression; sub-conscious processing of stimuli; modelling attentional bias.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat A. Toga, P. Thompson, S. Mori, K. Amunts, K. Zilles, Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 7, 952–966 (2006)CrossRef A. Toga, P. Thompson, S. Mori, K. Amunts, K. Zilles, Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 7, 952–966 (2006)CrossRef
2.
Zurück zum Zitat E. Niedermeyer, F.H. L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, Philadelphia, 2005), 1309p E. Niedermeyer, F.H. L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, Philadelphia, 2005), 1309p
3.
Zurück zum Zitat D.A. Craig, H.T. Nguyen, Adaptive EEG Thought Pattern Classifier for Advanced Wheelchair Control, in International Conference of the IEEE Engineering in Medical and Biology Society (2007), pp. 2544–2547 D.A. Craig, H.T. Nguyen, Adaptive EEG Thought Pattern Classifier for Advanced Wheelchair Control, in International Conference of the IEEE Engineering in Medical and Biology Society (2007), pp. 2544–2547
4.
Zurück zum Zitat F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B.A. Arnaldi, Review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R15 (2007)CrossRef F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B.A. Arnaldi, Review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R15 (2007)CrossRef
5.
Zurück zum Zitat R.C. deCharms, Application of real-time fMRI. Nat. Rev. Neurosci. 9(9), 720–729 (2008) R.C. deCharms, Application of real-time fMRI. Nat. Rev. Neurosci. 9(9), 720–729 (2008)
6.
Zurück zum Zitat T. Mitchel et al., Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)MATHCrossRef T. Mitchel et al., Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)MATHCrossRef
7.
Zurück zum Zitat K. Broderson et al., Generative embedding for model-based classification of fMRI Data. PLoS Comput. Biol. 7(6), 1–19 (2011)MathSciNet K. Broderson et al., Generative embedding for model-based classification of fMRI Data. PLoS Comput. Biol. 7(6), 1–19 (2011)MathSciNet
8.
Zurück zum Zitat K. Broderson et al., Decoding the perception of pain from fMRI using multivariate pattern analysis. NeuroImage 63, 1162–1170 (2012)CrossRef K. Broderson et al., Decoding the perception of pain from fMRI using multivariate pattern analysis. NeuroImage 63, 1162–1170 (2012)CrossRef
9.
Zurück zum Zitat K. Zilles, K. Amunts, Centenary of Brodmann’s map—conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)CrossRef K. Zilles, K. Amunts, Centenary of Brodmann’s map—conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)CrossRef
10.
Zurück zum Zitat S. Eickhoff et al., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)CrossRef S. Eickhoff et al., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)CrossRef
11.
Zurück zum Zitat J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of The Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, 1988) J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of The Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, 1988)
12.
Zurück zum Zitat J. Lancaster et al., Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)CrossRef J. Lancaster et al., Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)CrossRef
13.
Zurück zum Zitat A.C. Evans, D.L. Collins, S.R. Mills, E.D. Brown, R.L. Kelly, T.M. Peters, 3D Statistical Neuroanatomical Models from 305 MRI Volumes, in IEEE-Nuclear Science Symposium and Medical Imaging Conference (IEEE Press, 1993), pp. 1813–1817 A.C. Evans, D.L. Collins, S.R. Mills, E.D. Brown, R.L. Kelly, T.M. Peters, 3D Statistical Neuroanatomical Models from 305 MRI Volumes, in IEEE-Nuclear Science Symposium and Medical Imaging Conference (IEEE Press, 1993), pp. 1813–1817
14.
Zurück zum Zitat J. Ashburner, Computational anatomy with the SPM software. Magn. Reson. Imaging 27(8), 1163–1174 (2009)CrossRef J. Ashburner, Computational anatomy with the SPM software. Magn. Reson. Imaging 27(8), 1163–1174 (2009)CrossRef
15.
Zurück zum Zitat L. Benuskova, N. Kasabov, Computational Neuro-genetic Modelling (Springer, New York, 2007), p. 290 L. Benuskova, N. Kasabov, Computational Neuro-genetic Modelling (Springer, New York, 2007), p. 290
16.
Zurück zum Zitat M. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)CrossRef M. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)CrossRef
17.
Zurück zum Zitat W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)CrossRef W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)CrossRef
18.
Zurück zum Zitat C. Koch, R. Reid, Neuroscience: observation of the mind. Nature 483(7390), 397–398 (2012)CrossRef C. Koch, R. Reid, Neuroscience: observation of the mind. Nature 483(7390), 397–398 (2012)CrossRef
20.
Zurück zum Zitat Van Essen et al., The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRef Van Essen et al., The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)CrossRef
21.
Zurück zum Zitat H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)CrossRef H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)CrossRef
22.
Zurück zum Zitat E.M. Izhikevich, G.M. Edelman, Large-scale model of mammalian thalamocortical systems. PNAS 105, 3593–3598 (2008)CrossRef E.M. Izhikevich, G.M. Edelman, Large-scale model of mammalian thalamocortical systems. PNAS 105, 3593–3598 (2008)CrossRef
23.
Zurück zum Zitat S. Song, K. Miller, L. Abbott et al., Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)CrossRef S. Song, K. Miller, L. Abbott et al., Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)CrossRef
24.
Zurück zum Zitat N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)CrossRef N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)CrossRef
25.
Zurück zum Zitat M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)CrossRef M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)CrossRef
26.
Zurück zum Zitat M.G. Doborjeh, Y. Wang, N. Kasabov, R. Kydd, B. Russell, A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans. Biomed. Eng. 63(9), 1830–1841 (2016) M.G. Doborjeh, Y. Wang, N. Kasabov, R. Kydd, B. Russell, A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans. Biomed. Eng. 63(9), 1830–1841 (2016)
27.
Zurück zum Zitat M. Doborjeh, N. Kasabov, Z.G. Doborjeh, Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data. Evolving Syst. 1–17 (2017). https://doi.org/10.1007/s12530-017-9178-8 M. Doborjeh, N. Kasabov, Z.G. Doborjeh, Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data. Evolving Syst. 1–17 (2017). https://​doi.​org/​10.​1007/​s12530-017-9178-8
28.
Zurück zum Zitat N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf. Sci. 294, 565–575 (2014). https://doi.org/10.1016/j.ins.2014.06.028 N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf. Sci. 294, 565–575 (2014). https://​doi.​org/​10.​1016/​j.​ins.​2014.​06.​028
29.
Zurück zum Zitat K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, On-line Spatiotemporal Pattern Recognition with Evolving Spiking Neural Networks Utilizing Address Event Representation, Rank Oder and Temporal Spike Learning, in Proceedings of WCCI 2012 (IEEE Press, 2012), pp. 554–560 K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, On-line Spatiotemporal Pattern Recognition with Evolving Spiking Neural Networks Utilizing Address Event Representation, Rank Oder and Temporal Spike Learning, in Proceedings of WCCI 2012 (IEEE Press, 2012), pp. 554–560
30.
Zurück zum Zitat W. Gerstner, What’s different with spiking neurons?, in Plausible Neural Networks for Biological Modelling, ed. by H. Mastebroek, H. Vos (Kluwer Academic Publishers, Dordrecht, 2001), pp. 23–48 W. Gerstner, What’s different with spiking neurons?, in Plausible Neural Networks for Biological Modelling, ed. by H. Mastebroek, H. Vos (Kluwer Academic Publishers, Dordrecht, 2001), pp. 23–48
31.
Zurück zum Zitat G, Indiveri, B. Linares-Barranco, T. Hamilton, A. Van Schaik, R. Etienne-Cummings, T. Delbruck, S. Liu, P. Dudek, P. Hafliger, S. Renaud et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5 (2011) G, Indiveri, B. Linares-Barranco, T. Hamilton, A. Van Schaik, R. Etienne-Cummings, T. Delbruck, S. Liu, P. Dudek, P. Hafliger, S. Renaud et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5 (2011)
32.
Zurück zum Zitat N. Scott, N. Kasabov, G. Indiveri, NeuCube Neuromorphic Framework for Spatio-Temporal Brain Data and Its Python Implementation, in Proceedings of ICONIP 2013. LNCS, vol. 8228 (Springer, Berlin, 2013), pp.78-84 N. Scott, N. Kasabov, G. Indiveri, NeuCube Neuromorphic Framework for Spatio-Temporal Brain Data and Its Python Implementation, in Proceedings of ICONIP 2013. LNCS, vol. 8228 (Springer, Berlin, 2013), pp.78-84
33.
Zurück zum Zitat N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52, 62–76 (2014)CrossRef N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52, 62–76 (2014)CrossRef
34.
Zurück zum Zitat L. Koessler, L. Maillard, A. Benhadid et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage 46, 64–72 (2009)CrossRef L. Koessler, L. Maillard, A. Benhadid et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage 46, 64–72 (2009)CrossRef
35.
Zurück zum Zitat S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119 (1998)CrossRef S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119 (1998)CrossRef
37.
Zurück zum Zitat Z. K. Keirn, in Alternative modes of communication between man and machine. Master’s Thesis, Electrical Engineering Department, Purdue University, USA Z. K. Keirn, in Alternative modes of communication between man and machine. Master’s Thesis, Electrical Engineering Department, Purdue University, USA
38.
Zurück zum Zitat Z.A. Keirn, J.I. Aunon, A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37(12), 1209–1214 (1990)CrossRef Z.A. Keirn, J.I. Aunon, A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37(12), 1209–1214 (1990)CrossRef
39.
Zurück zum Zitat C. Anderson, D. Peterson, Recent advances in EEG signal analysis and classification, in Clinical Applications of Artificial Neural Networks, ed. by R. Dybowski, V. Gant (Cambridge University Press, Cambridge, 2001), pp. 175–191 C. Anderson, D. Peterson, Recent advances in EEG signal analysis and classification, in Clinical Applications of Artificial Neural Networks, ed. by R. Dybowski, V. Gant (Cambridge University Press, Cambridge, 2001), pp. 175–191
40.
Zurück zum Zitat C. Anderson, Z. Sijercic, Classification of EEG Signals from Four Subjects During Five Mental Tasks, in Solving Engineering Problems with Neural Networks: Proceedings of Conference on Engineering Applications in Neural Networks (EANN’96), ed. by A.B. Bulsari, S. Kallio, D. Tsaptsinos (Systems Engineering Association, PL 34, FIN-20111 Turku 11, Finland, 1996), pp. 407–414 C. Anderson, Z. Sijercic, Classification of EEG Signals from Four Subjects During Five Mental Tasks, in Solving Engineering Problems with Neural Networks: Proceedings of Conference on Engineering Applications in Neural Networks (EANN’96), ed. by A.B. Bulsari, S. Kallio, D. Tsaptsinos (Systems Engineering Association, PL 34, FIN-20111 Turku 11, Finland, 1996), pp. 407–414
41.
Zurück zum Zitat L. Nan-Ying et al., Classification of mental tasks from EEG signals using extreme learning machine. Int. J. Neural Syst. 16(01), 29–38 (2006)CrossRef L. Nan-Ying et al., Classification of mental tasks from EEG signals using extreme learning machine. Int. J. Neural Syst. 16(01), 29–38 (2006)CrossRef
42.
Zurück zum Zitat N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London, 2007) (first edition 2002) N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London, 2007) (first edition 2002)
43.
Zurück zum Zitat H. Kawano, A. Seo, Z. Gholami, N. Kasabov, M.G. Doborjeh, Analysis of Similarity and Differences in Brain Activities between Perception and Production of Facial Expressions Using EEG Data and the NeuCube Spiking Neural Network Architecture, in ICONIP, Kyoto. LNCS (Springer, Bernin, 2016) H. Kawano, A. Seo, Z. Gholami, N. Kasabov, M.G. Doborjeh, Analysis of Similarity and Differences in Brain Activities between Perception and Production of Facial Expressions Using EEG Data and the NeuCube Spiking Neural Network Architecture, in ICONIP, Kyoto. LNCS (Springer, Bernin, 2016)
44.
Zurück zum Zitat V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in the premotor cortex. Brain 119, 593–609 (1996) V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in the premotor cortex. Brain 119, 593–609 (1996)
45.
Zurück zum Zitat M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, G. Rizzolatti, Cortical mechanisms of human imitation. Science 286(5449), 2526–2528 (1999) M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, G. Rizzolatti, Cortical mechanisms of human imitation. Science 286(5449), 2526–2528 (1999)
46.
Zurück zum Zitat E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling and understanding of stream data. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2016) E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling and understanding of stream data. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2016)
47.
Zurück zum Zitat N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78(2016), 1–14 (2016)CrossRef N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78(2016), 1–14 (2016)CrossRef
48.
Zurück zum Zitat M.G. Doborjeh, E. Capecci, N. Kasabov, Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a Neucube Evolving Spiking Neural Network Model, in Analysis of Similarity and Differences in Brain Activities. IEEE SSCI, Orlando, USA (2014), pp. 227–228 M.G. Doborjeh, E. Capecci, N. Kasabov, Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a Neucube Evolving Spiking Neural Network Model, in Analysis of Similarity and Differences in Brain Activities. IEEE SSCI, Orlando, USA (2014), pp. 227–228
49.
Zurück zum Zitat M.G. Doborjeh, N. Kasabov, Dynamic 3D Clustering of Spatio-temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data, in Neural Information Processing, Istanbul (2015) M.G. Doborjeh, N. Kasabov, Dynamic 3D Clustering of Spatio-temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data, in Neural Information Processing, Istanbul (2015)
50.
Zurück zum Zitat D. Matsumoto, P. Ekman, in Japanese, caucasian facial expressions of emotion (JACFEE) [Slides]. Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University, San Francisco (1988) D. Matsumoto, P. Ekman, in Japanese, caucasian facial expressions of emotion (JACFEE) [Slides]. Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University, San Francisco (1988)
51.
Zurück zum Zitat K.M. Alfano, C.R. Cimino, Alteration of expected hemispheric asymmetries: valence and arousal effects in neuropsychological models of emotion. Brain Cogn. 66, 213–220 (2008) K.M. Alfano, C.R. Cimino, Alteration of expected hemispheric asymmetries: valence and arousal effects in neuropsychological models of emotion. Brain Cogn. 66, 213–220 (2008)
53.
Zurück zum Zitat S. Venkataraman, S.D. Sarasvathy, N. Dew, W.R. Forster, Reflections on the 2010 AMR decade award: whither the promise? Moving forward with entrepreneurship as a science of the artificial. Acad. Manage. Rev. 37, 21–33 (2012) S. Venkataraman, S.D. Sarasvathy, N. Dew, W.R. Forster, Reflections on the 2010 AMR decade award: whither the promise? Moving forward with entrepreneurship as a science of the artificial. Acad. Manage. Rev. 37, 21–33 (2012)
54.
Zurück zum Zitat Z.O. Touhami, L. Benlafkih, M. Jiddane, Y. Cherrah, O. Malki, A. Benomar, Neuromarketing: where marketing and neuroscience meet. Afr. J. Bus. Manage. 5(5), 1528–1532 (2011). https://doi.org/10.5897/AJBM10.729CrossRef Z.O. Touhami, L. Benlafkih, M. Jiddane, Y. Cherrah, O. Malki, A. Benomar, Neuromarketing: where marketing and neuroscience meet. Afr. J. Bus. Manage. 5(5), 1528–1532 (2011). https://​doi.​org/​10.​5897/​AJBM10.​729CrossRef
55.
Zurück zum Zitat S.M. McClure, J. Li, D. Tomlin, K.S. Cypert, L.M. Montague, P.R. Montague, Neural correlates of behavioural preference for culturally familiar drinks. Neuron 44, 379–387 (2004)CrossRef S.M. McClure, J. Li, D. Tomlin, K.S. Cypert, L.M. Montague, P.R. Montague, Neural correlates of behavioural preference for culturally familiar drinks. Neuron 44, 379–387 (2004)CrossRef
56.
Zurück zum Zitat M. Schaefer, H. Berens, H.J. Heinz, M. Rotte, Neural correlates of culturally familiar brands of car manufacturers. Neuroimage 31(2), 861–865 (2006)CrossRef M. Schaefer, H. Berens, H.J. Heinz, M. Rotte, Neural correlates of culturally familiar brands of car manufacturers. Neuroimage 31(2), 861–865 (2006)CrossRef
57.
Zurück zum Zitat H. Walter, B. Abler, A. Ciaramidaro, S. Erk, Motivating forces of human actions. Neuroimaging reward and social interaction. Brain Res. Bull. 15(5), 368–381 (2005) H. Walter, B. Abler, A. Ciaramidaro, S. Erk, Motivating forces of human actions. Neuroimaging reward and social interaction. Brain Res. Bull. 15(5), 368–381 (2005)
58.
Zurück zum Zitat A.R. Damasio, The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1413–1420 (1996)CrossRef A.R. Damasio, The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1413–1420 (1996)CrossRef
59.
Zurück zum Zitat N. Lee, A.J. Broderick, L. Chamberlain, What is neuromarketing? A discussion and agenda for future research. Int. J. Psychophysiol. 63, 199–204 (2007)CrossRef N. Lee, A.J. Broderick, L. Chamberlain, What is neuromarketing? A discussion and agenda for future research. Int. J. Psychophysiol. 63, 199–204 (2007)CrossRef
60.
Zurück zum Zitat A. Morin, Self-awareness part 1: definition, measures, effects, functions, and antecedents. J. Theor. Social Psychol. 5(10), 807–823 (2011) A. Morin, Self-awareness part 1: definition, measures, effects, functions, and antecedents. J. Theor. Social Psychol. 5(10), 807–823 (2011)
61.
Zurück zum Zitat C. Oreja-Guevara, Neuromarketing. Neurologia Supl. 5(1), 4–7 (2009) C. Oreja-Guevara, Neuromarketing. Neurologia Supl. 5(1), 4–7 (2009)
62.
Zurück zum Zitat C.S. Crandall, Psychophysical scaling of stressful life events. Psychol. Sci. 3, 256–258 (1992)CrossRef C.S. Crandall, Psychophysical scaling of stressful life events. Psychol. Sci. 3, 256–258 (1992)CrossRef
63.
Zurück zum Zitat D. Labbe, N. Pineau, N. Martin, Measuring consumer response to complex precision: scaling vs. categorization task. Food Quality Prefer. 23(2), 134–137 (2012) D. Labbe, N. Pineau, N. Martin, Measuring consumer response to complex precision: scaling vs. categorization task. Food Quality Prefer. 23(2), 134–137 (2012)
64.
Zurück zum Zitat J. Hu, Z.G. Hou, Y.X. Chen, N. Kasabov, N. Scott, EEG-Based Classification of Upper-limb ADL Using SNN for Active Robotic Rehabilation, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BooRob), Sao Paulo, Brazil (2014), 409–414 J. Hu, Z.G. Hou, Y.X. Chen, N. Kasabov, N. Scott, EEG-Based Classification of Upper-limb ADL Using SNN for Active Robotic Rehabilation, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BooRob), Sao Paulo, Brazil (2014), 409–414
65.
Zurück zum Zitat N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://dx.doi.org/10.1016/j.neunet.2015.09.011 N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://​dx.​doi.​org/​10.​1016/​j.​neunet.​2015.​09.​011
66.
Zurück zum Zitat E. Capecci, Z. Doborjeh, N. Mammone, F. La Foresta, F.C. Morabito, N. Kasabov, Longitudinal Study of Alzheimer’s Disease Degeneration through EEG Data Analysis with a NeuCube Spiking Neural Network Model, in Proceedings of WCCI—IJCNN 2016, Vancouver, 24–29 July 2016 (IEEE Press, 2016), pp. 1360–1366 E. Capecci, Z. Doborjeh, N. Mammone, F. La Foresta, F.C. Morabito, N. Kasabov, Longitudinal Study of Alzheimer’s Disease Degeneration through EEG Data Analysis with a NeuCube Spiking Neural Network Model, in Proceedings of WCCI—IJCNN 2016, Vancouver, 24–29 July 2016 (IEEE Press, 2016), pp. 1360–1366
67.
Zurück zum Zitat Z.G. Doborjeh, M.G. Doborjeh, N. Kasabov, Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cognitive Comput. 10, 35–48 (2018). https://doi.10.1007/s12559-017-9517-x Z.G. Doborjeh, M.G. Doborjeh, N. Kasabov, Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cognitive Comput. 10, 35–48 (2018). https://​doi.​10.​1007/​s12559-017-9517-x
68.
Zurück zum Zitat N.Kasabov (ed.), Springer Handbook of Bio-Neuroinformatics (Springer, Berlin, 2014) N.Kasabov (ed.), Springer Handbook of Bio-Neuroinformatics (Springer, Berlin, 2014)
70.
Zurück zum Zitat American Electroencephalographic Society, American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8(2), 200–202 (1991)CrossRef American Electroencephalographic Society, American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8(2), 200–202 (1991)CrossRef
71.
Zurück zum Zitat G.H. Klem, H.O. Lüders, H. Jasper, C. Elger, The ten-twenty electrode system of the International Federation. Electroencephalogram Clin. Neurophysiol. 52, 3 (1999) G.H. Klem, H.O. Lüders, H. Jasper, C. Elger, The ten-twenty electrode system of the International Federation. Electroencephalogram Clin. Neurophysiol. 52, 3 (1999)
Metadaten
Titel
Deep Learning and Deep Knowledge Representation of EEG Data
verfasst von
Nikola K. Kasabov
Copyright-Jahr
2019
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-57715-8_8