Skip to main content
Top
Published in: Multimedia Systems 3/2024

01-06-2024 | Regular Paper

Deep Learning-based forgery detection and localization for compressed images using a hybrid optimization model

Authors: Arundhati Bhowal, Sarmistha Neogy, Ruchira Naskar

Published in: Multimedia Systems | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Manipulation of digital images has become quite common in recent years because of the rise of various image editing tools. It has become a challenging task to identify authentic and tampered images, since tampered images are non-distinguishable by the naked eye. Hence, different approaches are used for the identification of tampered and authentic images. However, conventional techniques are considered to be inefficient in terms of identifying the tampered images effectively. Therefore, DL (Deep Learning)-based approaches are used for detecting the authentic and tampered images as DL techniques deliver improved accuracy and better automated FE (feature extraction) skills which help in achieving the desired outcomes. Moreover, neural networks can extract complex hidden features of the images, thus providing better accuracy of the model. Therefore, the proposed model utilizes DL-based approaches for effective feature optimization and classification of authentic and tampered images by employing the proposed EfficientNet model and by incorporating QF (quality factors) into images. In the proposed feature optimization, SPOA (Seagull Pelican Optimization Algorithm) is used for diminishing the number of features which drops the computational complexity and aids in refining the performance of the proposed framework by selecting the relevant and suitable features from the accessible data. Further, in the proposed EfficientNet model, CDT (Cosine Disintegration Tempering) and TAS (Ternary Attention Structure) are incorporated for classification, where CDT aids the proposed model in learning discriminant features and helps in preventing the model from getting overfitted on the training dataset using assimilate rate adopted scheduling and TAS (Ternary Attention Structure) utilized in MBConv possess the capability to capture both channel attention information and spatial attention information, thereby making the model efficient and effective for classification of authentic and tampered images. The proposed work employs CASIA 1.0 and CASIA 2.0 dataset for classification. Eventually, the proposed work utilizes different performance metrics for assessing the efficacy of the model and comparing it with the prevailing models for calculating the effectiveness of the proposed model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Novak, M. That Viral Photo of Putin and Trump Is Fake. GIZMODO. 2017. Available online: https://​bit.​ly/​3bL6PQo (Accessed on 7 July 2020).
 
Literature
1.
go back to reference Kaur, N., Jindal, N., Singh, K.: A passive approach for the detection of splicing forgery in digital images. Multimed. Tools Appl. 79, 32037–32063 (2020)CrossRef Kaur, N., Jindal, N., Singh, K.: A passive approach for the detection of splicing forgery in digital images. Multimed. Tools Appl. 79, 32037–32063 (2020)CrossRef
2.
go back to reference Islam, M.M., Karmakar, G., Kamruzzaman, J., Murshed, M.: A robust forgery detection method for copy-move and splicing attacks in images. Electronics 9(9), 1500 (2020)CrossRef Islam, M.M., Karmakar, G., Kamruzzaman, J., Murshed, M.: A robust forgery detection method for copy-move and splicing attacks in images. Electronics 9(9), 1500 (2020)CrossRef
3.
go back to reference Bourouis, S., Alroobaea, R., Alharbi, A.M., Andejany, M., Rubaiee, S.: Recent advances in digital multimedia tampering detection for forensics analysis. Symmetry 12(11), 1811 (2020)CrossRef Bourouis, S., Alroobaea, R., Alharbi, A.M., Andejany, M., Rubaiee, S.: Recent advances in digital multimedia tampering detection for forensics analysis. Symmetry 12(11), 1811 (2020)CrossRef
4.
go back to reference Wang, X.-Y., Wang, C., Wang, L., Jiao, L.-X., Yang, H.-Y., Niu, P.-P.: A fast and high accurate image copy-move forgery detection approach. Multidimens. Syst. Signal Process. 31, 857–883 (2020)CrossRef Wang, X.-Y., Wang, C., Wang, L., Jiao, L.-X., Yang, H.-Y., Niu, P.-P.: A fast and high accurate image copy-move forgery detection approach. Multidimens. Syst. Signal Process. 31, 857–883 (2020)CrossRef
5.
go back to reference Sujin, J., Sophia, S.: Copy-move geometric tampering estimation through enhanced sift detector method. Comput. Syst. Sci. Eng. 44(1) (2023) Sujin, J., Sophia, S.: Copy-move geometric tampering estimation through enhanced sift detector method. Comput. Syst. Sci. Eng. 44(1) (2023)
6.
go back to reference Singhania, S., Arju, N., Singh, R.: Image tampering detection using convolutional neural network. Int. J. Synth. Emot. (IJSE) 10(1), 54–63 (2019)CrossRef Singhania, S., Arju, N., Singh, R.: Image tampering detection using convolutional neural network. Int. J. Synth. Emot. (IJSE) 10(1), 54–63 (2019)CrossRef
7.
go back to reference Guillaro, F., Cozzolino, D., Sud, A., Dufour, N., Verdoliva, L.: Trufor: Leveraging all-round clues for trustworthy image forgery detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20606–20615 (2023) Guillaro, F., Cozzolino, D., Sud, A., Dufour, N., Verdoliva, L.: Trufor: Leveraging all-round clues for trustworthy image forgery detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20606–20615 (2023)
8.
go back to reference Thakur, R., Rohilla, R.: Recent advances in digital image manipulation detection techniques: a brief review. Foren. Sci. Int. 312, 110311 (2020)CrossRef Thakur, R., Rohilla, R.: Recent advances in digital image manipulation detection techniques: a brief review. Foren. Sci. Int. 312, 110311 (2020)CrossRef
9.
go back to reference Walia, S., Kumar, K.: Digital image forgery detection: a systematic scrutiny. Aust. J. Foren. Sci. 51(5), 488–526 (2019)CrossRef Walia, S., Kumar, K.: Digital image forgery detection: a systematic scrutiny. Aust. J. Foren. Sci. 51(5), 488–526 (2019)CrossRef
10.
go back to reference Wang, M., Fu, X., Liu, J., Zha, Z.-J.: Jpeg compression-aware image forgery localization. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5871–5879 (2022) Wang, M., Fu, X., Liu, J., Zha, Z.-J.: Jpeg compression-aware image forgery localization. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5871–5879 (2022)
11.
go back to reference Trojovskỳ, P., Dehghani, M.: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors 22(3), 855 (2022)CrossRef Trojovskỳ, P., Dehghani, M.: Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications. Sensors 22(3), 855 (2022)CrossRef
12.
go back to reference Che, Y., He, D.: An enhanced seagull optimization algorithm for solving engineering optimization problems. Appl. Intell. 52(11), 13043–13081 (2022)CrossRef Che, Y., He, D.: An enhanced seagull optimization algorithm for solving engineering optimization problems. Appl. Intell. 52(11), 13043–13081 (2022)CrossRef
13.
go back to reference Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2016). IEEE Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2016). IEEE
14.
go back to reference Rajini, N.H.: Image forgery identification using convolution neural network. Int. J. Recent Technol. Eng. 8(1), 311–320 (2019) Rajini, N.H.: Image forgery identification using convolution neural network. Int. J. Recent Technol. Eng. 8(1), 311–320 (2019)
15.
go back to reference Fridrich, J., Soukal, D., Lukas, J., et al.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop, vol. 3, pp. 652–63 (2003). Cleveland, OH Fridrich, J., Soukal, D., Lukas, J., et al.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop, vol. 3, pp. 652–63 (2003). Cleveland, OH
16.
go back to reference Pevnỳ, T., Fridrich, J.: Estimation of primary quantization matrix for steganalysis of double-compressed jpeg images. In: Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, vol. 6819, pp. 392–404 (2008). SPIE Pevnỳ, T., Fridrich, J.: Estimation of primary quantization matrix for steganalysis of double-compressed jpeg images. In: Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, vol. 6819, pp. 392–404 (2008). SPIE
17.
go back to reference Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. In: Proceedings of the 8th Workshop on Multimedia and Security, pp. 48–55 (2006) Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. In: Proceedings of the 8th Workshop on Multimedia and Security, pp. 48–55 (2006)
18.
go back to reference Johnson, M.K., Farid, H.: Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the 7th Workshop on Multimedia and Security, pp. 1–10 (2005) Johnson, M.K., Farid, H.: Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the 7th Workshop on Multimedia and Security, pp. 1–10 (2005)
19.
go back to reference Johnson, M.K., Farid, H.: Metric measurements on a plane from a single image (2006) Johnson, M.K., Farid, H.: Metric measurements on a plane from a single image (2006)
20.
go back to reference Zanardelli, M., Guerrini, F., Leonardi, R., Adami, N.: Image forgery detection: a survey of recent deep-learning approaches. Multimed. Tools Appl. 82(12), 17521–17566 (2023)CrossRef Zanardelli, M., Guerrini, F., Leonardi, R., Adami, N.: Image forgery detection: a survey of recent deep-learning approaches. Multimed. Tools Appl. 82(12), 17521–17566 (2023)CrossRef
21.
go back to reference Yao, H., Xu, M., Qiao, T., Wu, Y., Zheng, N.: Image forgery detection and localization via a reliability fusion map. Sensors 20(22), 6668 (2020)CrossRef Yao, H., Xu, M., Qiao, T., Wu, Y., Zheng, N.: Image forgery detection and localization via a reliability fusion map. Sensors 20(22), 6668 (2020)CrossRef
22.
go back to reference Manu, V., Mehtre, B.: Tamper detection of social media images using quality artifacts and texture features. Foren. Sci. Int. 295, 100–112 (2019)CrossRef Manu, V., Mehtre, B.: Tamper detection of social media images using quality artifacts and texture features. Foren. Sci. Int. 295, 100–112 (2019)CrossRef
23.
go back to reference Pawar, D., Gajpal, M.: Image forensic tool (ift): Image retrieval, tampering detection, and classification. Int. J. Digit. Crime Forensics (IJDCF) 13(6), 1–15 (2021)CrossRef Pawar, D., Gajpal, M.: Image forensic tool (ift): Image retrieval, tampering detection, and classification. Int. J. Digit. Crime Forensics (IJDCF) 13(6), 1–15 (2021)CrossRef
25.
go back to reference Diallo, B., Urruty, T., Bourdon, P., Fernandez-Maloigne, C.: Improving robustness of image tampering detection for compression. In: MultiMedia Modeling: 25th International Conference, MMM 2019, Thessaloniki, Greece, January 8–11, 2019, Proceedings, Part I 25, pp. 387–398 (2019). Springer Diallo, B., Urruty, T., Bourdon, P., Fernandez-Maloigne, C.: Improving robustness of image tampering detection for compression. In: MultiMedia Modeling: 25th International Conference, MMM 2019, Thessaloniki, Greece, January 8–11, 2019, Proceedings, Part I 25, pp. 387–398 (2019). Springer
26.
go back to reference Bevinamarad, P., Unki, P.H.: Robust image tampering detection technique using k-nearest neighbors (knn) classifier. In: Innovations in Computational Intelligence and Computer Vision: Proceedings of ICICV 2021, pp. 211–220. Springer (2022) Bevinamarad, P., Unki, P.H.: Robust image tampering detection technique using k-nearest neighbors (knn) classifier. In: Innovations in Computational Intelligence and Computer Vision: Proceedings of ICICV 2021, pp. 211–220. Springer (2022)
27.
go back to reference Qazi, E.U.H., Zia, T., Almorjan, A.: Deep learning-based digital image forgery detection system. Appl. Sci. 12(6), 2851 (2022)CrossRef Qazi, E.U.H., Zia, T., Almorjan, A.: Deep learning-based digital image forgery detection system. Appl. Sci. 12(6), 2851 (2022)CrossRef
28.
go back to reference Xue, Y., Zhu, C., Tan, X.: Isd-ssd: image splicing detection by using modified single shot multibox detector. In: International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP 2022), vol. 12456, pp. 569–575 (2022). SPIE Xue, Y., Zhu, C., Tan, X.: Isd-ssd: image splicing detection by using modified single shot multibox detector. In: International Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP 2022), vol. 12456, pp. 569–575 (2022). SPIE
29.
go back to reference Alipour, N., Behrad, A.: Semantic segmentation of jpeg blocks using a deep cnn for non-aligned jpeg forgery detection and localization. Multimed. Tools Appl. 79(11–12), 8249–8265 (2020)CrossRef Alipour, N., Behrad, A.: Semantic segmentation of jpeg blocks using a deep cnn for non-aligned jpeg forgery detection and localization. Multimed. Tools Appl. 79(11–12), 8249–8265 (2020)CrossRef
30.
go back to reference Chen, Y., Retraint, F., Qiao, T.: Image splicing forgery detection using simplified generalized noise model. Signal Process. Image Communicat. 107, 116785 (2022)CrossRef Chen, Y., Retraint, F., Qiao, T.: Image splicing forgery detection using simplified generalized noise model. Signal Process. Image Communicat. 107, 116785 (2022)CrossRef
31.
go back to reference Ali, S.S., Ganapathi, I.I., Vu, N.-S., Ali, S.D., Saxena, N., Werghi, N.: Image forgery detection using deep learning by recompressing images. Electronics 11(3), 403 (2022)CrossRef Ali, S.S., Ganapathi, I.I., Vu, N.-S., Ali, S.D., Saxena, N., Werghi, N.: Image forgery detection using deep learning by recompressing images. Electronics 11(3), 403 (2022)CrossRef
32.
go back to reference Zeng, P., Tong, L., Liang, Y., Zhou, N., Wu, J.: Multitask image splicing tampering detection based on attention mechanism. Mathematics 10(20), 3852 (2022)CrossRef Zeng, P., Tong, L., Liang, Y., Zhou, N., Wu, J.: Multitask image splicing tampering detection based on attention mechanism. Mathematics 10(20), 3852 (2022)CrossRef
33.
go back to reference Ding, H., Chen, L., Tao, Q., Fu, Z., Dong, L., Cui, X.: Dcu-net: a dual-channel u-shaped network for image splicing forgery detection. Neural Computi. Applicat. 35(7), 5015–5031 (2023)CrossRef Ding, H., Chen, L., Tao, Q., Fu, Z., Dong, L., Cui, X.: Dcu-net: a dual-channel u-shaped network for image splicing forgery detection. Neural Computi. Applicat. 35(7), 5015–5031 (2023)CrossRef
34.
go back to reference Hosny, K.M., Mortda, A.M., Lashin, N.A., Fouda, M.M.: A new method to detect splicing image forgery using convolutional neural network. Appl. Sci. 13(3), 1272 (2023)CrossRef Hosny, K.M., Mortda, A.M., Lashin, N.A., Fouda, M.M.: A new method to detect splicing image forgery using convolutional neural network. Appl. Sci. 13(3), 1272 (2023)CrossRef
35.
go back to reference Hu, J., Xue, R., Teng, G., Niu, S., Jin, D.: Image splicing manipulation location by multi-scale dual-channel supervision. Multimed. Tools Appl. 1–24 (2023) Hu, J., Xue, R., Teng, G., Niu, S., Jin, D.: Image splicing manipulation location by multi-scale dual-channel supervision. Multimed. Tools Appl. 1–24 (2023)
36.
go back to reference Muniappan, T., Abd Warif, N.B., Ismail, A., Abir, N.A.M.: An evaluation of convolutional neural network (cnn) model for copy-move and splicing forgery detection. Int. J. Intell. Syst. Appl. Eng. 11(2), 730–740 (2023) Muniappan, T., Abd Warif, N.B., Ismail, A., Abir, N.A.M.: An evaluation of convolutional neural network (cnn) model for copy-move and splicing forgery detection. Int. J. Intell. Syst. Appl. Eng. 11(2), 730–740 (2023)
37.
go back to reference Wu, Y., Wo, Y., Han, G.: Joint manipulation trace attention network and adaptive fusion mechanism for image splicing forgery localization. Multimed. Tools Appl. 81(27), 38757–38780 (2022)CrossRef Wu, Y., Wo, Y., Han, G.: Joint manipulation trace attention network and adaptive fusion mechanism for image splicing forgery localization. Multimed. Tools Appl. 81(27), 38757–38780 (2022)CrossRef
38.
go back to reference Nath, S., Naskar, R.: Automated image splicing detection using deep cnn-learned features and ann-based classifier. Signal Image Video Process. 15, 1601–1608 (2021)CrossRef Nath, S., Naskar, R.: Automated image splicing detection using deep cnn-learned features and ann-based classifier. Signal Image Video Process. 15, 1601–1608 (2021)CrossRef
39.
go back to reference Ding, H., Chen, L., Tao, Q., Fu, Z., Dong, L., Cui, X.: Dcu-net: a dual-channel u-shaped network for image splicing forgery detection. Neural Comput. Appl. 35(7), 5015–5031 Ding, H., Chen, L., Tao, Q., Fu, Z., Dong, L., Cui, X.: Dcu-net: a dual-channel u-shaped network for image splicing forgery detection. Neural Comput. Appl. 35(7), 5015–5031
40.
go back to reference Niyishaka, P., Bhagvati, C.: Image splicing detection technique based on illumination-reflectance model and lbp. Multimed. Tools Appl. 80, 2161–2175 (2021)CrossRef Niyishaka, P., Bhagvati, C.: Image splicing detection technique based on illumination-reflectance model and lbp. Multimed. Tools Appl. 80, 2161–2175 (2021)CrossRef
41.
go back to reference Kanwal, N., Girdhar, A., Kaur, L., Bhullar, J.S.: Digital image splicing detection technique using optimal threshold based local ternary pattern. Multimed. Tools Appl. 79(19–20), 12829–12846 (2020)CrossRef Kanwal, N., Girdhar, A., Kaur, L., Bhullar, J.S.: Digital image splicing detection technique using optimal threshold based local ternary pattern. Multimed. Tools Appl. 79(19–20), 12829–12846 (2020)CrossRef
42.
go back to reference El-Latif, E.I.A., Taha, A., Zayed, H.H.: A passive approach for detecting image splicing using deep learning and haar wavelet transform. Int. J. Comput. Netw. Inform. Secur. 11(5), 28–35 (2019) El-Latif, E.I.A., Taha, A., Zayed, H.H.: A passive approach for detecting image splicing using deep learning and haar wavelet transform. Int. J. Comput. Netw. Inform. Secur. 11(5), 28–35 (2019)
Metadata
Title
Deep Learning-based forgery detection and localization for compressed images using a hybrid optimization model
Authors
Arundhati Bhowal
Sarmistha Neogy
Ruchira Naskar
Publication date
01-06-2024
Publisher
Springer Berlin Heidelberg
Published in
Multimedia Systems / Issue 3/2024
Print ISSN: 0942-4962
Electronic ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-024-01336-6

Other articles of this Issue 3/2024

Multimedia Systems 3/2024 Go to the issue