Skip to main content
Top
Published in: Neural Computing and Applications 20/2020

05-02-2020 | S.I. : Applying Artificial Intelligence to the Internet of Things

Deep neural network-based clustering technique for secure IIoT

Authors: Amrit Mukherjee, Pratik Goswami, Lixia Yang, Sumarga K. Sah Tyagi, U. C. Samal, S. K. Mohapatra

Published in: Neural Computing and Applications | Issue 20/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advent of Industrial Internet of Things (IIoT) has determined the proliferation of smart devices connected to the Internet and injected a vast amount of data into it, which may undergo many computational stages at several clusters. On the one hand, the benefits brought by these technologies are well known; however, in the envisaged scenario, the exposure of data, services and infrastructures to malicious attacks has definitely grown. Even a single breach on any of the links of the data–service–infrastructure chain may seriously compromise the security of the end-user application. Therefore, the logical and smart clustering while satisfying security and reliability is a key issue for IIoT networks. A novel clustering method proposed based on power demand assures security of data information in IIoT-based applications. First, security capacity of the system is calculated from mutual information of primary channel and eavesdropping channel. Then, under the maximum transmit power constraint, an optimal transmit power is found based on deep learning technique, which maximizes security capacity of the system. Finally, the network is clustered according to the calculated power demand. Experimental results accredit the proposed method has higher security and reliability, as well as lower network time overhead and power consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akpakwu GA, Silva BJ, Hancke GP et al (2018) A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6(99):3619–3647CrossRef Akpakwu GA, Silva BJ, Hancke GP et al (2018) A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6(99):3619–3647CrossRef
2.
go back to reference Behera TM, Mohapatra SK, Samal UC, Khan MS (2019) Hybrid heterogeneous routing scheme for improved network performance in WSNs for animal tracking. Internet Things 6:100047CrossRef Behera TM, Mohapatra SK, Samal UC, Khan MS (2019) Hybrid heterogeneous routing scheme for improved network performance in WSNs for animal tracking. Internet Things 6:100047CrossRef
5.
go back to reference Laubhan K, Talaat K, Riehl S et al (2017) A four-layer wireless sensor network framework for IoT applications. In: IEEE international midwest symposium on circuits & systems Laubhan K, Talaat K, Riehl S et al (2017) A four-layer wireless sensor network framework for IoT applications. In: IEEE international midwest symposium on circuits & systems
6.
go back to reference Course SI, Lecture P, Jo IS (2011) Physical-layer security. J Commun Netw 13(5):545-545 Course SI, Lecture P, Jo IS (2011) Physical-layer security. J Commun Netw 13(5):545-545
7.
go back to reference Mukherjee A, Fakoorian SAA, Huang J et al (2010) Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tutor 16(3):1550–1573CrossRef Mukherjee A, Fakoorian SAA, Huang J et al (2010) Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tutor 16(3):1550–1573CrossRef
8.
go back to reference Deng Y, Wang L, Elkashlan M et al (2017) Physical layer security in three-tier wireless sensor networks: a stochastic geometry approach. IEEE Trans Inf Forensics Secur 11(6):1128–1138CrossRef Deng Y, Wang L, Elkashlan M et al (2017) Physical layer security in three-tier wireless sensor networks: a stochastic geometry approach. IEEE Trans Inf Forensics Secur 11(6):1128–1138CrossRef
9.
go back to reference Jia Z, Zou Y, Zheng B (2017) Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access 5(99):5313–5320 Jia Z, Zou Y, Zheng B (2017) Physical-layer security and reliability challenges for industrial wireless sensor networks. IEEE Access 5(99):5313–5320
10.
go back to reference Mukherjee A et al (2016) HML based smart positioning of fusion center for cooperative communication in cognitive radio networks. IEEE Commun Lett 20(11):2261–2263CrossRef Mukherjee A et al (2016) HML based smart positioning of fusion center for cooperative communication in cognitive radio networks. IEEE Commun Lett 20(11):2261–2263CrossRef
11.
go back to reference Ghosh N, Banerjee I, Sherratt RS (2017) On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor networks. Wirel Netw 2017(8):1–17 Ghosh N, Banerjee I, Sherratt RS (2017) On-demand fuzzy clustering and ant-colony optimisation based mobile data collection in wireless sensor networks. Wirel Netw 2017(8):1–17
12.
go back to reference Fernando A, Angelo B, Joel R et al (2017) Improving multidimensional wireless sensor network lifetime using pearson correlation and fractal clustering. Sensors 17(6):1317–1321CrossRef Fernando A, Angelo B, Joel R et al (2017) Improving multidimensional wireless sensor network lifetime using pearson correlation and fractal clustering. Sensors 17(6):1317–1321CrossRef
13.
go back to reference Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) Residual energy based cluster-head selection in WSNs for IoT application. IEEE Internet Things J 6:5132–5139CrossRef Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) Residual energy based cluster-head selection in WSNs for IoT application. IEEE Internet Things J 6:5132–5139CrossRef
15.
go back to reference Yang X, Sheng M, Sun H, Wang X, Li J (2016) Spatial throughput of energy harvesting cognitive radio networks. In: International symposium on personal, indoor, and mobile radio communications (PIMRC), Valencia (Spain), pp 1–6 Yang X, Sheng M, Sun H, Wang X, Li J (2016) Spatial throughput of energy harvesting cognitive radio networks. In: International symposium on personal, indoor, and mobile radio communications (PIMRC), Valencia (Spain), pp 1–6
16.
go back to reference Shakir MZ, Tang W, Rao A, Imran MA, Alouini M-S (2011) Eigen value ratio detection based on exact moments of smallest and largest eigenvalues. In: International ICST conference on cognitive radio oriented wireless networks and communications (CROWNCOM), Osaka (Japan), pp 46–50 Shakir MZ, Tang W, Rao A, Imran MA, Alouini M-S (2011) Eigen value ratio detection based on exact moments of smallest and largest eigenvalues. In: International ICST conference on cognitive radio oriented wireless networks and communications (CROWNCOM), Osaka (Japan), pp 46–50
17.
go back to reference Hu Y, Niu Y, Lam J et al (2016) An energy-efficient adaptive overlapping clustering method for dynamic continuous monitoring in WSNs. IEEE Sens J 99:834–847 Hu Y, Niu Y, Lam J et al (2016) An energy-efficient adaptive overlapping clustering method for dynamic continuous monitoring in WSNs. IEEE Sens J 99:834–847
18.
go back to reference Goswami P et al (2019) An energy efficient clustering using firefly and HML for Optical wireless sensor network. Optik 182:181–185CrossRef Goswami P et al (2019) An energy efficient clustering using firefly and HML for Optical wireless sensor network. Optik 182:181–185CrossRef
19.
go back to reference Han S, Xu S, Meng W et al (2018) Dense-device-enabled cooperative networks for efficient and secure transmission. IEEE Netw 32:100–106CrossRef Han S, Xu S, Meng W et al (2018) Dense-device-enabled cooperative networks for efficient and secure transmission. IEEE Netw 32:100–106CrossRef
20.
go back to reference Sun L, Tourki K, Hou Y et al (2018) Safeguarding 5G networks through physical layer security technologies. Wirel Commun Mobile Comput 2018:1–2 Sun L, Tourki K, Hou Y et al (2018) Safeguarding 5G networks through physical layer security technologies. Wirel Commun Mobile Comput 2018:1–2
21.
go back to reference Oggier F, Hassibi B (2007) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRef Oggier F, Hassibi B (2007) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRef
22.
go back to reference Shafifiee S, Ulukus S (2009) Towards the secrecy capacity of the Gaussian MIMO wire-tap channel: the 2–2–1 channel. IEEE Trans Inf Theory 55(9):4033–4039MathSciNetCrossRef Shafifiee S, Ulukus S (2009) Towards the secrecy capacity of the Gaussian MIMO wire-tap channel: the 2–2–1 channel. IEEE Trans Inf Theory 55(9):4033–4039MathSciNetCrossRef
23.
go back to reference Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532MathSciNetCrossRef Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532MathSciNetCrossRef
24.
go back to reference Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRef Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972MathSciNetCrossRef
25.
go back to reference Guerreiro AS, Fraidenraich G, Souza RD (2015) On the ergodic secrecy capacity and secrecy outage probability of the MIMOME Rayleigh wiretap channel. Trans Emerg Telecommun Technol 28(1):1–13 Guerreiro AS, Fraidenraich G, Souza RD (2015) On the ergodic secrecy capacity and secrecy outage probability of the MIMOME Rayleigh wiretap channel. Trans Emerg Telecommun Technol 28(1):1–13
26.
go back to reference Ng DWK, Lo ES, Schober R (2014) Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans Wirel Commun 13(8):4599–4615CrossRef Ng DWK, Lo ES, Schober R (2014) Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans Wirel Commun 13(8):4599–4615CrossRef
27.
go back to reference Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 7(6):2180–2189CrossRef Goel S, Negi R (2008) Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 7(6):2180–2189CrossRef
28.
go back to reference Tsai SH, Poor HV (2014) Power allocation for artificial-noise secure MIMO precoding systems. IEEE Trans Signal Process 62(13):3479–3493MathSciNetCrossRef Tsai SH, Poor HV (2014) Power allocation for artificial-noise secure MIMO precoding systems. IEEE Trans Signal Process 62(13):3479–3493MathSciNetCrossRef
29.
go back to reference Lin PH, Lai SH, Lin SC et al (2013) on secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE J Sel Areas Commun 31(9):1728–1740CrossRef Lin PH, Lai SH, Lin SC et al (2013) on secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE J Sel Areas Commun 31(9):1728–1740CrossRef
30.
go back to reference Jian C, Chen X, Tao L et al (2017) Toward green and secure communications over massive MIMO relay networks: joint source and relay power allocation. IEEE Access 5(99):869–880CrossRef Jian C, Chen X, Tao L et al (2017) Toward green and secure communications over massive MIMO relay networks: joint source and relay power allocation. IEEE Access 5(99):869–880CrossRef
31.
go back to reference Duong TQ, Hoang TM, Kundu C et al (2017) Optimal power allocation for multiuser secure communication in cooperative relaying networks. IEEE Wirel Commun Lett 5(5):516–519CrossRef Duong TQ, Hoang TM, Kundu C et al (2017) Optimal power allocation for multiuser secure communication in cooperative relaying networks. IEEE Wirel Commun Lett 5(5):516–519CrossRef
34.
go back to reference Wang T, Wen CK, Wang H et al (2017) Deep learning for wireless physical layer: opportunities and challenges. China Commun 14(11):92–111CrossRef Wang T, Wen CK, Wang H et al (2017) Deep learning for wireless physical layer: opportunities and challenges. China Commun 14(11):92–111CrossRef
35.
go back to reference Zhang J, Jin S, Wen CK et al (2018) An overview of wireless transmission technology utilizing artificial intelligence. Telecommun Sci 34(8):46–55 Zhang J, Jin S, Wen CK et al (2018) An overview of wireless transmission technology utilizing artificial intelligence. Telecommun Sci 34(8):46–55
36.
go back to reference O’Shea TJ, Hoydis J (2017) An introduction to deep learning for the physical layer. IEEE Trans Cogn Commun Netw 3(4):563–575CrossRef O’Shea TJ, Hoydis J (2017) An introduction to deep learning for the physical layer. IEEE Trans Cogn Commun Netw 3(4):563–575CrossRef
38.
go back to reference Sanguinetti L, Zappone A, Debbah M (2018) Deep learning power allocation in massive MIMO. In: 2018 52nd Asilomar conference on signals, systems, and computers Sanguinetti L, Zappone A, Debbah M (2018) Deep learning power allocation in massive MIMO. In: 2018 52nd Asilomar conference on signals, systems, and computers
Metadata
Title
Deep neural network-based clustering technique for secure IIoT
Authors
Amrit Mukherjee
Pratik Goswami
Lixia Yang
Sumarga K. Sah Tyagi
U. C. Samal
S. K. Mohapatra
Publication date
05-02-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 20/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04763-4

Other articles of this Issue 20/2020

Neural Computing and Applications 20/2020 Go to the issue

S.I. : Applying Artificial Intelligence to the Internet of Things

Deep neural learning techniques with long short-term memory for gesture recognition

Premium Partner