Skip to main content
Top

2018 | OriginalPaper | Chapter

Deep-Ocean Tides in the South-West Indian Ocean: Comparing Deep-Sea Pressure to Satellite Data

Authors : Leo R. M. Maas, Borja Aguiar-González, Leandro Ponsoni

Published in: The Ocean in Motion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep ocean pressure measurements in two regions of the South-West Indian Ocean (West and East of Madagascar), covering one to two years of data, are analysed for tidal motions. The pressure data are taken both from Bottom Pressure Recorders as well as from mid-water column instruments. Coherent tides are characterised by fixed amplitudes and phases. Those inferred from bottom measurements compare well to tides obtained from satellite altimetry, and cover up to 99\(\%\) of the pressure variance in the frequency band having periods shorter than 29 h. Long-period tides, in the low-frequency band, are regularly overshadowed by (unwanted) eddy-induced mooring motion (‘blow-down’), which events have therefore been eliminated. In the Mozambique Channel, semidiurnal surface tides are stronger than East of Madagascar, and all appear to be near resonance with a basin mode. Away from the bottom, coherent internal tides were determined. Evidence of the presence of incoherent internal tides has been obtained by applying Harmonic Analyses over a moving time window of 1 year duration. East of Madagascar internal tides appear to be very strong, although its source remains unclear.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alford, M. H. (2003). Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159–162.CrossRef Alford, M. H. (2003). Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159–162.CrossRef
2.
go back to reference Badulin, S. I., Shrira, V. I., & Tsimring, L. S. (1985). The trapping and vertical focusing of internal waves in a pycnocline due to the horizontal inhomogeneities of density and currents. Journal of Fluid Mechanics, 158, 199–218.CrossRef Badulin, S. I., Shrira, V. I., & Tsimring, L. S. (1985). The trapping and vertical focusing of internal waves in a pycnocline due to the horizontal inhomogeneities of density and currents. Journal of Fluid Mechanics, 158, 199–218.CrossRef
3.
go back to reference Berry, M. (1987). The Bakerian lecture 1987: quantum chaology. Proceedings of the Royal Society of London A, 413, 183–198. Berry, M. (1987). The Bakerian lecture 1987: quantum chaology. Proceedings of the Royal Society of London A, 413, 183–198.
4.
go back to reference Bewley, G. P., Lathrop, D. P., Maas, L. R. M., & Sreenivasan, K. R. (2007). Inertial waves in rotating grid turbulence. Physics of Fluids, 19(7), 071701.CrossRef Bewley, G. P., Lathrop, D. P., Maas, L. R. M., & Sreenivasan, K. R. (2007). Inertial waves in rotating grid turbulence. Physics of Fluids, 19(7), 071701.CrossRef
5.
go back to reference Boisson, J., Lamriben, C., Maas, L. R. M., Cortet, P. P., & Moisy, F. (2012). Inertial waves and modes excited by the libration of a rotating cube. Physics of Fluids, 24(7), 076602.CrossRef Boisson, J., Lamriben, C., Maas, L. R. M., Cortet, P. P., & Moisy, F. (2012). Inertial waves and modes excited by the libration of a rotating cube. Physics of Fluids, 24(7), 076602.CrossRef
6.
go back to reference Cartwright, D. E. (2000). Tides: A scientific history. Cambridge: Cambridge University Press. Cartwright, D. E. (2000). Tides: A scientific history. Cambridge: Cambridge University Press.
7.
go back to reference Cartwright, D. E., & Ray, R. D. (1990). Oceanic tides from Geosat altimetry. Journal of Geophysical Research: Oceans, 95(C3), 3069–3090.CrossRef Cartwright, D. E., & Ray, R. D. (1990). Oceanic tides from Geosat altimetry. Journal of Geophysical Research: Oceans, 95(C3), 3069–3090.CrossRef
9.
go back to reference da Silva, J. C. B., New, A. L., & Magalhães, J. (2011). On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean. Deep-Sea Research I, 58, 229–240.CrossRef da Silva, J. C. B., New, A. L., & Magalhães, J. (2011). On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean. Deep-Sea Research I, 58, 229–240.CrossRef
10.
go back to reference Defant, A. (1961). Physical oceanography (Vol. 2). Defant, A. (1961). Physical oceanography (Vol. 2).
11.
go back to reference Dewey, R. K. (1999). Mooring design and dynamics: A Matlab package for designing and analyzing oceanographic moorings. Marine Models, 1(1), 103–157.CrossRef Dewey, R. K. (1999). Mooring design and dynamics: A Matlab package for designing and analyzing oceanographic moorings. Marine Models, 1(1), 103–157.CrossRef
12.
go back to reference Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183–204.CrossRef Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183–204.CrossRef
13.
go back to reference Harlander, U., Ridderinkhof, H., Schouten, M. W. & de Ruijter, W. P. M. (2009). Long-term observations of transport, eddies, and Rossby waves in the Mozambique Channel, Journal of Geophysical Research, 114(C02003), 1–15. Harlander, U., Ridderinkhof, H., Schouten, M. W. & de Ruijter, W. P. M. (2009). Long-term observations of transport, eddies, and Rossby waves in the Mozambique Channel, Journal of Geophysical Research, 114(C02003), 1–15.
14.
go back to reference Hendershott, M. C. (1981). Long waves and ocean tides. In Evolution of physical oceanography (pp. 292–341). Hendershott, M. C. (1981). Long waves and ocean tides. In Evolution of physical oceanography (pp. 292–341).
15.
go back to reference Hutter, K., Wang, Y., & Chubarenko, I. P. (2011). Physics of lakes. Springer. Hutter, K., Wang, Y., & Chubarenko, I. P. (2011). Physics of lakes. Springer.
16.
go back to reference Konyaev, K. V., Sabinin, K. D., & Serebryany, A. N. (1995). Large-amplitude internal waves at the Mascarene Ridge in the Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 42(11–12), 20752083–20812091. Konyaev, K. V., Sabinin, K. D., & Serebryany, A. N. (1995). Large-amplitude internal waves at the Mascarene Ridge in the Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 42(11–12), 20752083–20812091.
17.
go back to reference Kunze, E. (1985). Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15, 544–565.CrossRef Kunze, E. (1985). Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15, 544–565.CrossRef
18.
go back to reference Lamriben, C., Cortet, P. P., Moisy, F., & Maas, L. R. M. (2011). Excitation of inertial modes in a closed grid turbulence experiment under rotation. Physics of Fluids, 23(1), 015102.CrossRef Lamriben, C., Cortet, P. P., Moisy, F., & Maas, L. R. M. (2011). Excitation of inertial modes in a closed grid turbulence experiment under rotation. Physics of Fluids, 23(1), 015102.CrossRef
19.
go back to reference LeBlond, P. H., & Mysak, L. A. (1981). Waves in the ocean. Elsevier. LeBlond, P. H., & Mysak, L. A. (1981). Waves in the ocean. Elsevier.
20.
go back to reference Maas, L. R. M. (1997). On the nonlinear Helmholtz response of almost-enclosed tidal basins with sloping bottoms. Journal of Fluid Mechanics, 349, 361–380.CrossRef Maas, L. R. M. (1997). On the nonlinear Helmholtz response of almost-enclosed tidal basins with sloping bottoms. Journal of Fluid Mechanics, 349, 361–380.CrossRef
21.
go back to reference Maas, L. R. M. (2003). On the amphidromic structure of inertial waves in a rectangular parallelepiped. Fluid Dynamics Research, 33, 373–401.CrossRef Maas, L. R. M. (2003). On the amphidromic structure of inertial waves in a rectangular parallelepiped. Fluid Dynamics Research, 33, 373–401.CrossRef
22.
go back to reference Maas, L. R. M. (2011). Topographies lacking tidal conversion. Journal of Fluid Mechanics, 684, 5–24.CrossRef Maas, L. R. M. (2011). Topographies lacking tidal conversion. Journal of Fluid Mechanics, 684, 5–24.CrossRef
23.
go back to reference Manders, A. M. M., Maas, L. R. M., & Gerkema, T. (2004). Observations of internal tides in the Mozambique Channel. Journal of Geophysical Research: Oceans, 109(C12). Manders, A. M. M., Maas, L. R. M., & Gerkema, T. (2004). Observations of internal tides in the Mozambique Channel. Journal of Geophysical Research: Oceans, 109(C12).
24.
go back to reference Moum, J. N., & Nash, J. D. (2008). Seafloor pressure measurements of nonlinear internal waves. Journal of Physical Oceanography, 38(2), 481–491.CrossRef Moum, J. N., & Nash, J. D. (2008). Seafloor pressure measurements of nonlinear internal waves. Journal of Physical Oceanography, 38(2), 481–491.CrossRef
25.
go back to reference Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep Sea Research Part I: Oceanographic Research Papers, 42(1), 135–148.CrossRef Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep Sea Research Part I: Oceanographic Research Papers, 42(1), 135–148.CrossRef
26.
go back to reference Munk, W. H., & Cartwright, D. E. (1966). Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society of London, 259(1105), 533–581.CrossRef Munk, W. H., & Cartwright, D. E. (1966). Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society of London, 259(1105), 533–581.CrossRef
27.
go back to reference Nurijanyan, S., Bokhove, O., & Maas, L. R. M. (2013). A new semi-analytical solution for inertial waves in a rectangular parallelepiped. Physics of Fluids, 25(12), 126601.CrossRef Nurijanyan, S., Bokhove, O., & Maas, L. R. M. (2013). A new semi-analytical solution for inertial waves in a rectangular parallelepiped. Physics of Fluids, 25(12), 126601.CrossRef
28.
go back to reference Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28(8), 929–937.CrossRef Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28(8), 929–937.CrossRef
29.
go back to reference Platzman, G. W. (1971). Ocean tides and related waves. Mathematical Problems in the Geophysical Sciences, 14(Part 2), 239–291. Platzman, G. W. (1971). Ocean tides and related waves. Mathematical Problems in the Geophysical Sciences, 14(Part 2), 239–291.
30.
go back to reference Ponsoni, L., Aguiar-González, B., Maas, L. R. M., van Aken, H. M., & Ridderinkhof, H. (2015). Long-term observations of the East Madagascar Undercurrent. Deep-Sea Research I, 100, 64–78. Ponsoni, L., Aguiar-González, B., Maas, L. R. M., van Aken, H. M., & Ridderinkhof, H. (2015). Long-term observations of the East Madagascar Undercurrent. Deep-Sea Research I, 100, 64–78.
31.
go back to reference Ponsoni, L., Aguiar-González, B., Ridderinkhof, H., & Maas, L. R. M. (2016). The East Madagascar Current: Volume transport and variability based on long-term observations. Journal of Physical Oceanography, 46(4), 1045–1065.CrossRef Ponsoni, L., Aguiar-González, B., Ridderinkhof, H., & Maas, L. R. M. (2016). The East Madagascar Current: Volume transport and variability based on long-term observations. Journal of Physical Oceanography, 46(4), 1045–1065.CrossRef
32.
go back to reference Proudman, J. (1917). On the dynamic equation of the tides. Parts 1–3. Proceedings of the London Mathematical Society, Series 2, 18, 168. Proudman, J. (1917). On the dynamic equation of the tides. Parts 1–3. Proceedings of the London Mathematical Society, Series 2, 18, 168.
33.
go back to reference Rao, D. (1966). Free gravitational oscillations in rotating rectangular basins. Journal of Fluid Mechanics, 25, 523–555.CrossRef Rao, D. (1966). Free gravitational oscillations in rotating rectangular basins. Journal of Fluid Mechanics, 25, 523–555.CrossRef
34.
go back to reference Ray, R. D. (2013). Precise comparisons of bottom-pressure and altimetric ocean tides. Journal of Geophysical Research: Oceans, 118(9), 4570–4584. Ray, R. D. (2013). Precise comparisons of bottom-pressure and altimetric ocean tides. Journal of Geophysical Research: Oceans, 118(9), 4570–4584.
35.
go back to reference Ray, R. D., & Mitchum, G. T. (1997). Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Progress in Oceanography, 35–162. Ray, R. D., & Mitchum, G. T. (1997). Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Progress in Oceanography, 35–162.
36.
go back to reference Ridderinkhof, H., van der Werf, P. M., Ullgren, J. E., van Aken, H. M., van Leeuwen, P. J. & de Ruijter, W. P. M. (2010). Seasonal and interannual variability in the Mozambique Channel from moored current observations. Journal of Geophysical Research: Oceans, 115(C06010), 1–18. Ridderinkhof, H., van der Werf, P. M., Ullgren, J. E., van Aken, H. M., van Leeuwen, P. J. & de Ruijter, W. P. M. (2010). Seasonal and interannual variability in the Mozambique Channel from moored current observations. Journal of Geophysical Research: Oceans, 115(C06010), 1–18.
37.
go back to reference Schrama, E. J. O., & Ray, R. D. (1994). A preliminary tidal analysis of TOPEX/POSEIDON altimetry. Journal of Geophysical Research: Oceans, 99(C12), 24799–24808.CrossRef Schrama, E. J. O., & Ray, R. D. (1994). A preliminary tidal analysis of TOPEX/POSEIDON altimetry. Journal of Geophysical Research: Oceans, 99(C12), 24799–24808.CrossRef
38.
go back to reference Taylor, G. I. (1921). Tidal oscillations in gulfs and basins. Proceedings of the London Mathematical Society, Series 2, 148–181. Taylor, G. I. (1921). Tidal oscillations in gulfs and basins. Proceedings of the London Mathematical Society, Series 2, 148–181.
39.
go back to reference Terra, G. M., Doelman, A., & Maas, L. R. (2004). Weakly nonlinear cubic interactions in coastal resonance. Journal of Fluid Mechanics, 520, 93–134.CrossRef Terra, G. M., Doelman, A., & Maas, L. R. (2004). Weakly nonlinear cubic interactions in coastal resonance. Journal of Fluid Mechanics, 520, 93–134.CrossRef
40.
go back to reference Ullgren, J. E., van Aken, H. M., Ridderinkhof, H., & de Ruijter, W. P. M. (2012). The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations. Deep Sea Research Part I: Oceanographic Research Papers, 69, 36–50.CrossRef Ullgren, J. E., van Aken, H. M., Ridderinkhof, H., & de Ruijter, W. P. M. (2012). The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations. Deep Sea Research Part I: Oceanographic Research Papers, 69, 36–50.CrossRef
41.
go back to reference van Haren, H. (2013). Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions. Journal of Fluid Mechanics, 714, 591–611.CrossRef van Haren, H. (2013). Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions. Journal of Fluid Mechanics, 714, 591–611.CrossRef
42.
go back to reference Whewell, W. (1836). Researches on the tides. Sixth series. On the results of an extensive system of tide observations made on the coasts of Europe and America in June 1835. Phillosophical Transactions of the Royal Society of London, 126, 289–341.CrossRef Whewell, W. (1836). Researches on the tides. Sixth series. On the results of an extensive system of tide observations made on the coasts of Europe and America in June 1835. Phillosophical Transactions of the Royal Society of London, 126, 289–341.CrossRef
43.
go back to reference Zaron, E. D. & Egbert, G. D. (2007). The impact of the M2 internal tide on data-assimilative model estimates of the surface tide. Ocean Modelling, 18, 210–216. Zaron, E. D. & Egbert, G. D. (2007). The impact of the M2 internal tide on data-assimilative model estimates of the surface tide. Ocean Modelling, 18, 210–216.
Metadata
Title
Deep-Ocean Tides in the South-West Indian Ocean: Comparing Deep-Sea Pressure to Satellite Data
Authors
Leo R. M. Maas
Borja Aguiar-González
Leandro Ponsoni
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_12