Skip to main content
Top
Published in: Wireless Networks 2/2023

06-10-2022 | Original Paper

Deep reinforcement learning mechanism for deadline-aware cache placement in device-to-device mobile edge networks

Authors: Manoj Kumar Somesula, Sai Krishna Mothku, Anusha Kotte

Published in: Wireless Networks | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Caching the most likely to be requested content at the mobile devices in a cooperative manner can facilitate direct content delivery without fetching content from the remote content server and thus alleviate the user-perceived latency, reduce the burden on backhaul and minimize the duplicated content transmissions. In addition to content popularity, it is also essential to consider the users’ dynamic behaviour for real-time applications, which can further improve communication between user devices, leading to efficient content service time. Most previous studies consider stationary network topologies, in which all users remain stationary during data transmission, and the user can receive desired content from the corresponding base station. In this work, we study an essential issue: caching content by taking advantage of user mobility and the randomness of user interaction time. We consider a realistic scenario in a cooperative caching problem with user devices moving at various velocities. We formulate the cache placement problems as maximization of saved delay with capacity and deadline constraints by considering the contact duration and inter-contact time among the user devices. A deep reinforcement learning-based caching scheme is presented to solve the high dimensionality of the proposed Integer linear programming problem. The proposed caching schemes improve the long-term reward and higher convergence rate than the Q-learning mechanism. Extensive simulation results demonstrate that the proposed cooperative caching mechanism significantly improves up to 23 % on hit ratio, 24 % on acceleration ratio and 25 % on offloading ratio compared with existing mechanisms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2019). In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network, 33(5), 156–165.CrossRef Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2019). In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network, 33(5), 156–165.CrossRef
2.
go back to reference Inc, C. S. (2019). Cisco visual networking index: Global mobile data traffic forecast update. Update, 2017, 2022. Inc, C. S. (2019). Cisco visual networking index: Global mobile data traffic forecast update. Update, 2017, 2022.
3.
go back to reference Yao, J., Han, T., & Ansari, N. (2019). On mobile edge caching. IEEE Communications Surveys & Tutorials, 21(3), 2525–2553.CrossRef Yao, J., Han, T., & Ansari, N. (2019). On mobile edge caching. IEEE Communications Surveys & Tutorials, 21(3), 2525–2553.CrossRef
4.
go back to reference Qiu, L., & Cao, G. (2019). Popularity-aware caching increases the capacity of wireless networks. IEEE Transactions on Mobile Computing, 19(1), 173–187.CrossRef Qiu, L., & Cao, G. (2019). Popularity-aware caching increases the capacity of wireless networks. IEEE Transactions on Mobile Computing, 19(1), 173–187.CrossRef
5.
go back to reference Pan, Y., Pan, C., Yang, Z., Chen, M., & Wang, J. (2019). A caching strategy towards maximal d2d assisted offloading gain. IEEE Transactions on Mobile Computing, 19(11), 2489–2504.CrossRef Pan, Y., Pan, C., Yang, Z., Chen, M., & Wang, J. (2019). A caching strategy towards maximal d2d assisted offloading gain. IEEE Transactions on Mobile Computing, 19(11), 2489–2504.CrossRef
6.
go back to reference Prerna, D., Tekchandani, R., & Kumar, N. (2020). Device-to-device content caching techniques in 5g: A taxonomy, solutions, and challenges. Computer Communications, 153, 48–84.CrossRef Prerna, D., Tekchandani, R., & Kumar, N. (2020). Device-to-device content caching techniques in 5g: A taxonomy, solutions, and challenges. Computer Communications, 153, 48–84.CrossRef
7.
go back to reference Yu, S., Dab, B., Movahedi, Z., Langar, R., & Wang, L. (2019). A socially-aware hybrid computation offloading framework for multi-access edge computing. IEEE Transactions on Mobile Computing, 19(6), 1247–1259.CrossRef Yu, S., Dab, B., Movahedi, Z., Langar, R., & Wang, L. (2019). A socially-aware hybrid computation offloading framework for multi-access edge computing. IEEE Transactions on Mobile Computing, 19(6), 1247–1259.CrossRef
8.
go back to reference Tran, T. X., Le, D. V., Yue, G., & Pompili, D. (2018). Cooperative hierarchical caching and request scheduling in a cloud radio access network. IEEE Transactions on Mobile Computing, 17(12), 2729–2743.CrossRef Tran, T. X., Le, D. V., Yue, G., & Pompili, D. (2018). Cooperative hierarchical caching and request scheduling in a cloud radio access network. IEEE Transactions on Mobile Computing, 17(12), 2729–2743.CrossRef
9.
go back to reference Li, L., Zhao, G., & Blum, R. S. (2018). A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies. IEEE Communications Surveys & Tutorials, 20(3), 1710–1732.CrossRef Li, L., Zhao, G., & Blum, R. S. (2018). A survey of caching techniques in cellular networks: Research issues and challenges in content placement and delivery strategies. IEEE Communications Surveys & Tutorials, 20(3), 1710–1732.CrossRef
10.
go back to reference Chen, M., Saad, W., Yin, C., & Debbah, M. (2017). Echo state networks for proactive caching in cloud-based radio access networks with mobile users. IEEE Transactions on Wireless Communications, 16(6), 3520–3535.CrossRef Chen, M., Saad, W., Yin, C., & Debbah, M. (2017). Echo state networks for proactive caching in cloud-based radio access networks with mobile users. IEEE Transactions on Wireless Communications, 16(6), 3520–3535.CrossRef
11.
go back to reference Zhu, H., Cao, Y., Wang, W., Jiang, T., & Jin, S. (2018). Deep reinforcement learning for mobile edge caching: Review, new features, and open issues. IEEE Network, 32(6), 50–57.CrossRef Zhu, H., Cao, Y., Wang, W., Jiang, T., & Jin, S. (2018). Deep reinforcement learning for mobile edge caching: Review, new features, and open issues. IEEE Network, 32(6), 50–57.CrossRef
12.
go back to reference Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.CrossRefMATH Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, G. (2013). Femtocaching: Wireless content delivery through distributed caching helpers. IEEE Transactions on Information Theory, 59(12), 8402–8413.CrossRefMATH
13.
go back to reference Li, J., Liu, M., Lu, J., Shu, F., Zhang, Y., Bayat, S., & Jayakody, D. N. K. (2019). On social-aware content caching for d2d-enabled cellular networks with matching theory. IEEE Internet of Things Journal, 6(1), 297–310.CrossRef Li, J., Liu, M., Lu, J., Shu, F., Zhang, Y., Bayat, S., & Jayakody, D. N. K. (2019). On social-aware content caching for d2d-enabled cellular networks with matching theory. IEEE Internet of Things Journal, 6(1), 297–310.CrossRef
14.
go back to reference Yang, C., & Stoleru, R. (2020). Ceo: cost-aware energy efficient mobile data offloading via opportunistic communication. In 2020 International Conference on Computing (pp. 548–554). IEEE: Networking and Communications (ICNC). Yang, C., & Stoleru, R. (2020). Ceo: cost-aware energy efficient mobile data offloading via opportunistic communication. In 2020 International Conference on Computing (pp. 548–554). IEEE: Networking and Communications (ICNC).
15.
go back to reference Dai, X., Xiao, Z., Jiang, H., Alazab, M., Lui, J., Dustar, S., & Liu, J. (2022). Task co-offloading for d2d-assisted mobile edge computing in industrial internet of things. IEEE Transactions on Industrial Informatics Dai, X., Xiao, Z., Jiang, H., Alazab, M., Lui, J., Dustar, S., & Liu, J. (2022). Task co-offloading for d2d-assisted mobile edge computing in industrial internet of things. IEEE Transactions on Industrial Informatics
16.
go back to reference Wang, Z., Shah-Mansouri, H., & Wong, V. W. (2016). How to download more data from neighbors? a metric for d2d data offloading opportunity. IEEE Transactions on Mobile Computing, 16(6), 1658–1675.CrossRef Wang, Z., Shah-Mansouri, H., & Wong, V. W. (2016). How to download more data from neighbors? a metric for d2d data offloading opportunity. IEEE Transactions on Mobile Computing, 16(6), 1658–1675.CrossRef
17.
go back to reference Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2017). Mobility-aware caching in d2d networks. IEEE Transactions on Wireless Communications, 16(8), 5001–5015.CrossRef Wang, R., Zhang, J., Song, S., & Letaief, K. B. (2017). Mobility-aware caching in d2d networks. IEEE Transactions on Wireless Communications, 16(8), 5001–5015.CrossRef
18.
go back to reference Qiao, J., He, Y., & Shen, X. S. (2016). Proactive caching for mobile video streaming in millimeter wave 5g networks. IEEE Transactions on Wireless Communications, 15(10), 7187–7198.CrossRef Qiao, J., He, Y., & Shen, X. S. (2016). Proactive caching for mobile video streaming in millimeter wave 5g networks. IEEE Transactions on Wireless Communications, 15(10), 7187–7198.CrossRef
19.
go back to reference Lu, Z., Sun, X., & La Porta, T. (2016). Cooperative data offloading in opportunistic mobile networks. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, IEEE, pp 1–9 Lu, Z., Sun, X., & La Porta, T. (2016). Cooperative data offloading in opportunistic mobile networks. In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, IEEE, pp 1–9
20.
go back to reference Zhou, H., Wang, H., Li, X., & Leung, V. C. (2018). A survey on mobile data offloading technologies. IEEE Access, 6, 5101–5111.CrossRef Zhou, H., Wang, H., Li, X., & Leung, V. C. (2018). A survey on mobile data offloading technologies. IEEE Access, 6, 5101–5111.CrossRef
21.
go back to reference Poularakis, K., Iosifidis, G., & Tassiulas, L. (2014). Approximation algorithms for mobile data caching in small cell networks. IEEE Transactions on Communications, 62(10), 3665–3677.CrossRef Poularakis, K., Iosifidis, G., & Tassiulas, L. (2014). Approximation algorithms for mobile data caching in small cell networks. IEEE Transactions on Communications, 62(10), 3665–3677.CrossRef
22.
go back to reference Baştuğ, E., Kountouris, M., Bennis, M., Debbah, M. (2016). On the delay of geographical caching methods in two-tiered heterogeneous networks. In 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE, pp 1–5 Baştuğ, E., Kountouris, M., Bennis, M., Debbah, M. (2016). On the delay of geographical caching methods in two-tiered heterogeneous networks. In 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE, pp 1–5
23.
go back to reference Somesula, M. K., Rout, R. R., & Somayajulu, D. (2021). Contact duration-aware cooperative cache placement using genetic algorithm for mobile edge networks. Computer Networks, 193, 108062.CrossRef Somesula, M. K., Rout, R. R., & Somayajulu, D. (2021). Contact duration-aware cooperative cache placement using genetic algorithm for mobile edge networks. Computer Networks, 193, 108062.CrossRef
24.
go back to reference Bharath, B., Nagananda, K. G., Gündüz, D., & Poor, H. V. (2018). Caching with time-varying popularity profiles: A learning-theoretic perspective. IEEE Transactions on Communications, 66(9), 3837–3847.CrossRef Bharath, B., Nagananda, K. G., Gündüz, D., & Poor, H. V. (2018). Caching with time-varying popularity profiles: A learning-theoretic perspective. IEEE Transactions on Communications, 66(9), 3837–3847.CrossRef
25.
go back to reference Somesula, M. K., Rout, R. R., & Somayajulu, D. (2021). Deadline-aware caching using echo state network integrated fuzzy logic for mobile edge networks. Wireless Networks, 27(4), 2409–2429.CrossRef Somesula, M. K., Rout, R. R., & Somayajulu, D. (2021). Deadline-aware caching using echo state network integrated fuzzy logic for mobile edge networks. Wireless Networks, 27(4), 2409–2429.CrossRef
26.
go back to reference Wang, X., Zhang, Y., Leung, V. C., Guizani, N., & Jiang, T. (2018). D2d big data: Content deliveries over wireless device-to-device sharing in large-scale mobile networks. IEEE Wireless Communications, 25(1), 32–38.CrossRef Wang, X., Zhang, Y., Leung, V. C., Guizani, N., & Jiang, T. (2018). D2d big data: Content deliveries over wireless device-to-device sharing in large-scale mobile networks. IEEE Wireless Communications, 25(1), 32–38.CrossRef
27.
go back to reference Wu, D., Zhou, L., Cai, Y., & Qian, Y. (2018). Collaborative caching and matching for d2d content sharing. IEEE wireless communications, 25(3), 43–49.CrossRef Wu, D., Zhou, L., Cai, Y., & Qian, Y. (2018). Collaborative caching and matching for d2d content sharing. IEEE wireless communications, 25(3), 43–49.CrossRef
28.
go back to reference Liu, Z., Song, H., & Pan, D. (2020). Distributed video content caching policy with deep learning approaches for d2d communication. IEEE Transactions on Vehicular Technology, 69(12), 15644–15655.CrossRef Liu, Z., Song, H., & Pan, D. (2020). Distributed video content caching policy with deep learning approaches for d2d communication. IEEE Transactions on Vehicular Technology, 69(12), 15644–15655.CrossRef
29.
go back to reference Fu, Y., Salaün, L., Yang, X., Wen, W., & Quek, T. Q. (2021). Caching efficiency maximization for device-to-device communication networks: A recommend to cache approach. IEEE Transactions on Wireless Communications, 20(10), 6580–6594.CrossRef Fu, Y., Salaün, L., Yang, X., Wen, W., & Quek, T. Q. (2021). Caching efficiency maximization for device-to-device communication networks: A recommend to cache approach. IEEE Transactions on Wireless Communications, 20(10), 6580–6594.CrossRef
30.
go back to reference Zhao, D., Wang, H., Shao, K., & Zhu, Y. (2016) Deep reinforcement learning with experience replay based on sarsa. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp 1–6 Zhao, D., Wang, H., Shao, K., & Zhu, Y. (2016) Deep reinforcement learning with experience replay based on sarsa. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp 1–6
31.
go back to reference Zhang, W., Wu, D., Yang, W., & Cai, Y. (2019). Caching on the move: A user interest-driven caching strategy for d2d content sharing. IEEE Transactions on Vehicular Technology, 68(3), 2958–2971.CrossRef Zhang, W., Wu, D., Yang, W., & Cai, Y. (2019). Caching on the move: A user interest-driven caching strategy for d2d content sharing. IEEE Transactions on Vehicular Technology, 68(3), 2958–2971.CrossRef
32.
go back to reference Zhang, S., Quan, W., Li, J., Shi, W., Yang, P., & Shen, X. (2018). Air-ground integrated vehicular network slicing with content pushing and caching. IEEE Journal on Selected Areas in Communications, 36(9), 2114–2127.CrossRef Zhang, S., Quan, W., Li, J., Shi, W., Yang, P., & Shen, X. (2018). Air-ground integrated vehicular network slicing with content pushing and caching. IEEE Journal on Selected Areas in Communications, 36(9), 2114–2127.CrossRef
33.
go back to reference Ibrahim, A. M., Zewail, A. A., & Yener, A. (2020). Device-to-device coded-caching with distinct cache sizes. IEEE Transactions on Communications, 68(5), 2748–2762.CrossRef Ibrahim, A. M., Zewail, A. A., & Yener, A. (2020). Device-to-device coded-caching with distinct cache sizes. IEEE Transactions on Communications, 68(5), 2748–2762.CrossRef
34.
go back to reference Sun, R., Wang, Y., Lyu, L., Cheng, N., Zhang, S., Yang, T., & Shen, X. (2020). Delay-oriented caching strategies in d2d mobile networks. IEEE Transactions on Vehicular Technology, 69(8), 8529–8541.CrossRef Sun, R., Wang, Y., Lyu, L., Cheng, N., Zhang, S., Yang, T., & Shen, X. (2020). Delay-oriented caching strategies in d2d mobile networks. IEEE Transactions on Vehicular Technology, 69(8), 8529–8541.CrossRef
35.
go back to reference Poularakis, K., & Tassiulas, L. (2016). Code, cache and deliver on the move: A novel caching paradigm in hyper-dense small-cell networks. IEEE Transactions on Mobile Computing, 16(3), 675–687.CrossRef Poularakis, K., & Tassiulas, L. (2016). Code, cache and deliver on the move: A novel caching paradigm in hyper-dense small-cell networks. IEEE Transactions on Mobile Computing, 16(3), 675–687.CrossRef
36.
go back to reference Zhou, H., Wu, T., Zhang, H., & Wu, J. (2021). Incentive-driven deep reinforcement learning for content caching and d2d offloading. IEEE Journal on Selected Areas in Communications, 39(8), 2445–2460.CrossRef Zhou, H., Wu, T., Zhang, H., & Wu, J. (2021). Incentive-driven deep reinforcement learning for content caching and d2d offloading. IEEE Journal on Selected Areas in Communications, 39(8), 2445–2460.CrossRef
37.
go back to reference Bajpai, R., Chakraborty, S., Gupta, N. (2022). Adapting deep learning for content caching frameworks in device-to-device environments. IEEE Open Journal of the Communications Society Bajpai, R., Chakraborty, S., Gupta, N. (2022). Adapting deep learning for content caching frameworks in device-to-device environments. IEEE Open Journal of the Communications Society
38.
go back to reference Qiu, X., Liu, L., Chen, W., Hong, Z., & Zheng, Z. (2019). Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Transactions on Vehicular Technology, 68(8), 8050–8062.CrossRef Qiu, X., Liu, L., Chen, W., Hong, Z., & Zheng, Z. (2019). Online deep reinforcement learning for computation offloading in blockchain-empowered mobile edge computing. IEEE Transactions on Vehicular Technology, 68(8), 8050–8062.CrossRef
39.
go back to reference Somesula, M. K., Rout, R. R., & Somayajulu, D. V. (2022). Cooperative cache update using multi-agent recurrent deep reinforcement learning for mobile edge networks. Computer Networks, 209, 108876.CrossRef Somesula, M. K., Rout, R. R., & Somayajulu, D. V. (2022). Cooperative cache update using multi-agent recurrent deep reinforcement learning for mobile edge networks. Computer Networks, 209, 108876.CrossRef
40.
go back to reference He, Y., Liang, C., Yu, F.R., Leung, V.C. (2018). Integrated computing, caching, and communication for trust-based social networks: A big data drl approach. In 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, pp 1–6 He, Y., Liang, C., Yu, F.R., Leung, V.C. (2018). Integrated computing, caching, and communication for trust-based social networks: A big data drl approach. In 2018 IEEE Global Communications Conference (GLOBECOM), IEEE, pp 1–6
41.
go back to reference Zeng, S., Ren, Y., Wang, Y., Zhao, T., Qian, Z. (2019). Caching strategy based on deep q-learning in device-to-device scenario. In 2019 12th International Symposium on Computational Intelligence and Design (ISCID), IEEE, vol 1, pp 175–179 Zeng, S., Ren, Y., Wang, Y., Zhao, T., Qian, Z. (2019). Caching strategy based on deep q-learning in device-to-device scenario. In 2019 12th International Symposium on Computational Intelligence and Design (ISCID), IEEE, vol 1, pp 175–179
42.
go back to reference Jiang, W., Feng, G., Qin, S., Yum, T. S. P., & Cao, G. (2019). Multi-agent reinforcement learning for efficient content caching in mobile d2d networks. IEEE Transactions on Wireless Communications, 18(3), 1610–1622.CrossRef Jiang, W., Feng, G., Qin, S., Yum, T. S. P., & Cao, G. (2019). Multi-agent reinforcement learning for efficient content caching in mobile d2d networks. IEEE Transactions on Wireless Communications, 18(3), 1610–1622.CrossRef
43.
go back to reference Li, L., Xu, Y., Yin, J., Liang, W., Li, X., Chen, W., & Han, Z. (2019). Deep reinforcement learning approaches for content caching in cache-enabled d2d networks. IEEE Internet of Things Journal, 7(1), 544–557.CrossRef Li, L., Xu, Y., Yin, J., Liang, W., Li, X., Chen, W., & Han, Z. (2019). Deep reinforcement learning approaches for content caching in cache-enabled d2d networks. IEEE Internet of Things Journal, 7(1), 544–557.CrossRef
44.
go back to reference Chakraborty, S., Bajpai, R., & Gupta, N. (2021). R2-d2d: A novel deep learning based content-caching framework for d2d networks. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), IEEE, pp 1–5 Chakraborty, S., Bajpai, R., & Gupta, N. (2021). R2-d2d: A novel deep learning based content-caching framework for d2d networks. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), IEEE, pp 1–5
45.
go back to reference Jiang, W., Feng, G., & Qin, S. (2017). Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 16(5), 1382–1393.CrossRef Jiang, W., Feng, G., & Qin, S. (2017). Optimal cooperative content caching and delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile Computing, 16(5), 1382–1393.CrossRef
46.
go back to reference Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38.CrossRef Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26–38.CrossRef
47.
go back to reference Ahlehagh, H., & Dey, S. (2014). Video-aware scheduling and caching in the radio access network. IEEE/ACM Transactions on Networking (TON), 22(5), 1444–1462.CrossRef Ahlehagh, H., & Dey, S. (2014). Video-aware scheduling and caching in the radio access network. IEEE/ACM Transactions on Networking (TON), 22(5), 1444–1462.CrossRef
48.
go back to reference Peng, X., Shen, J.C., Zhang, J., & Letaief, K.B. (2015). Backhaul-aware caching placement for wireless networks. arXiv preprint arXiv:1509.00558 Peng, X., Shen, J.C., Zhang, J., & Letaief, K.B. (2015). Backhaul-aware caching placement for wireless networks. arXiv preprint arXiv:​1509.​00558
49.
go back to reference Blaszczyszyn, B., & Giovanidis, A. (2015). Optimal geographic caching in cellular networks. In 2015 IEEE International Conference on Communications (ICC), IEEE, pp 3358–3363 Blaszczyszyn, B., & Giovanidis, A. (2015). Optimal geographic caching in cellular networks. In 2015 IEEE International Conference on Communications (ICC), IEEE, pp 3358–3363
51.
go back to reference Garg, N., Sellathurai, M., Bhatia, V., Bharath, B., & Ratnarajah, T. (2019). Online content popularity prediction and learning in wireless edge caching. IEEE Transactions on Communications, 68(2), 1087–1100.CrossRef Garg, N., Sellathurai, M., Bhatia, V., Bharath, B., & Ratnarajah, T. (2019). Online content popularity prediction and learning in wireless edge caching. IEEE Transactions on Communications, 68(2), 1087–1100.CrossRef
Metadata
Title
Deep reinforcement learning mechanism for deadline-aware cache placement in device-to-device mobile edge networks
Authors
Manoj Kumar Somesula
Sai Krishna Mothku
Anusha Kotte
Publication date
06-10-2022
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2023
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-03135-1

Other articles of this Issue 2/2023

Wireless Networks 2/2023 Go to the issue