Skip to main content
Top
Published in: International Journal of Computer Vision 3/2016

01-12-2016

DeepMatching: Hierarchical Deformable Dense Matching

Authors: Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, Cordelia Schmid

Published in: International Journal of Computer Vision | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce a novel matching algorithm, called DeepMatching, to compute dense correspondences between images. DeepMatching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations and repetitive textures and efficiently determines dense correspondences in the presence of significant changes between images. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk (Mikolajczyk et al. A comparison of affine region detectors, 2005), the MPI-Sintel (Butler et al. A naturalistic open source movie for optical flow evaluation, 2012) and the Kitti (Geiger et al. Vision meets robotics: The KITTI dataset, 2013) datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results in particular for repetitive textures. We also apply DeepMatching to the computation of optical flow, called DeepFlow, by integrating it in the large displacement optical flow (LDOF) approach of Brox and Malik (Large displacement optical flow: descriptor matching in variational motion estimation, 2011). Additional robustness to large displacements and complex motion is obtained thanks to our matching approach. DeepFlow obtains competitive performance on public benchmarks for optical flow estimation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
This amounts to the cross-correlation of the patch and \(I'\).
 
2
Note that \(I'_{N,\varvec{p}'}\) only roughly corresponds to a \(N \times N\) square patch centered at \(2^\ell \varvec{p}'\) in \(I'\), due to subsampling and possible deformations.
 
3
Although the backtracking is conceptually close to the back-propagation training algorithm, it differs in term of how the scores are accumulated for each path.
 
4
We implemented this method ourselves.
 
5
We used the online code.
 
6
We report results from the original paper.
 
7
Note that this systematically improves the endpoint error compared to using the raw dense correspondence fields as flow.
 
Literature
go back to reference Bailer, C., Taetz, B., & Stricker, D. (2015). Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Bailer, C., Taetz, B., & Stricker, D. (2015). Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation.
go back to reference Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2011). A database and evaluation methodology for optical flow. In IJCV. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., & Szeliski, R. (2011). A database and evaluation methodology for optical flow. In IJCV.
go back to reference Barnes, C., Shechtman, E., Goldman, D. B., & Finkelstein, A. (2010). The generalized PatchMatch correspondence algorithm. In ECCV. Barnes, C., Shechtman, E., Goldman, D. B., & Finkelstein, A. (2010). The generalized PatchMatch correspondence algorithm. In ECCV.
go back to reference Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63, 75–104.CrossRef Black, M. J., & Anandan, P. (1996). The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63, 75–104.CrossRef
go back to reference Braux-Zin, J., Dupont, R., & Bartoli, A. (2013). A general dense image matching framework combining direct and feature-based costs. In ICCV. Braux-Zin, J., Dupont, R., & Bartoli, A. (2013). A general dense image matching framework combining direct and feature-based costs. In ICCV.
go back to reference Brox, T., & Malik, J. (2011). Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on PAMI, 33, 500–513.CrossRef Brox, T., & Malik, J. (2011). Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on PAMI, 33, 500–513.CrossRef
go back to reference Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In ECCV. Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In ECCV.
go back to reference Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., & Schnörr, C. (2005). Variational optical flow computation in real time. IEEE Transactions on Image Processing, 15, 608–615.MathSciNetCrossRefMATH Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., & Schnörr, C. (2005). Variational optical flow computation in real time. IEEE Transactions on Image Processing, 15, 608–615.MathSciNetCrossRefMATH
go back to reference Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J. (2012). A naturalistic open source movie for optical flow evaluation. In ECCV. Butler, D. J., Wulff, J., Stanley, G. B., & Black, M. J. (2012). A naturalistic open source movie for optical flow evaluation. In ECCV.
go back to reference Chen, Z., Jin, H., Lin, Z., Cohen, S., & Wu, Y. (2013). Large displacement optical flow from nearest neighbor fields. In CVPR. Chen, Z., Jin, H., Lin, Z., Cohen, S., & Wu, Y. (2013). Large displacement optical flow from nearest neighbor fields. In CVPR.
go back to reference Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR.
go back to reference Demetz, O., Stoll, M., Volz, S., Weickert, J., & Bruhn, A. (2014). Learning brightness transfer functions for the joint recovery of illumination changes and optical flow. In ECCV. Demetz, O., Stoll, M., Volz, S., Weickert, J., & Bruhn, A. (2014). Learning brightness transfer functions for the joint recovery of illumination changes and optical flow. In ECCV.
go back to reference Ecker, A., & Ullman, S. (2009). A hierarchical non-parametric method for capturing non-rigid deformations. Image and Vision Computing, 27, 87–98.CrossRef Ecker, A., & Ullman, S. (2009). A hierarchical non-parametric method for capturing non-rigid deformations. Image and Vision Computing, 27, 87–98.CrossRef
go back to reference Forsyth, D., & Ponce, J. (2011). Computer vision: A modern approach. New York: Pearson Education. Forsyth, D., & Ponce, J. (2011). Computer vision: A modern approach. New York: Pearson Education.
go back to reference Furukawa, Y., Curless, B., Seitz, S. M., & Szeliski, R. (2010). Towards internet-scale multi-view stereo. In CVPR. Furukawa, Y., Curless, B., Seitz, S. M., & Szeliski, R. (2010). Towards internet-scale multi-view stereo. In CVPR.
go back to reference Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. IJRR, 32, 1231–1237. Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. IJRR, 32, 1231–1237.
go back to reference HaCohen, Y., Shechtman, E., Goldman, D. B., & Lischinski, D. (2011). Non-rigid dense correspondence with applications for image enhancement. In SIGGRAPH. HaCohen, Y., Shechtman, E., Goldman, D. B., & Lischinski, D. (2011). Non-rigid dense correspondence with applications for image enhancement. In SIGGRAPH.
go back to reference Hassner, T., Mayzels, V., & Zelnik-Manor, L. (2012). On sifts and their scales. In CVPR. Hassner, T., Mayzels, V., & Zelnik-Manor, L. (2012). On sifts and their scales. In CVPR.
go back to reference Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.CrossRef Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203.CrossRef
go back to reference Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:​1408.​5093.
go back to reference Kennedy, R., & Taylor, C. J. (2015). Optical flow with geometric occlusion estimation and fusion of multiple frames. In EMMCVPR. Kennedy, R., & Taylor, C. J. (2015). Optical flow with geometric occlusion estimation and fusion of multiple frames. In EMMCVPR.
go back to reference Keysers, D., Deselaers, T., Gollan, C., & Ney, H. (2007). Deformation models for image recognition. IEEE Transactions on PAMI, 29, 1422–1435.CrossRef Keysers, D., Deselaers, T., Gollan, C., & Ney, H. (2007). Deformation models for image recognition. IEEE Transactions on PAMI, 29, 1422–1435.CrossRef
go back to reference Kim, J., Liu, C., Sha, F., & Grauman, K. (2013). Deformable spatial pyramid matching for fast dense correspondences. In CVPR. Kim, J., Liu, C., Sha, F., & Grauman, K. (2013). Deformable spatial pyramid matching for fast dense correspondences. In CVPR.
go back to reference Korman, S., & Avidan, S. (2011). Coherency sensitive hashing. In ICCV. Korman, S., & Avidan, S. (2011). Coherency sensitive hashing. In ICCV.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998a). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998a). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278–2324.CrossRef
go back to reference LeCun, Y., Bottou, L., Orr, G., & Muller, K. (1998b). Efficient backprop. In Neural Networks: Tricks of the trade. LeCun, Y., Bottou, L., Orr, G., & Muller, K. (1998b). Efficient backprop. In Neural Networks: Tricks of the trade.
go back to reference Leordeanu, M., Zanfir, A., & Sminchisescu, C. (2013). Locally affine sparse-to-dense matching for motion and occlusion estimation. In ICCV. Leordeanu, M., Zanfir, A., & Sminchisescu, C. (2013). Locally affine sparse-to-dense matching for motion and occlusion estimation. In ICCV.
go back to reference Liu, C., Yuen, J., & Torralba, A. (2011). SIFT flow: Dense correspondence across scenes and its applications. IEEE Transactions on PAMI, 33, 978–994.CrossRef Liu, C., Yuen, J., & Torralba, A. (2011). SIFT flow: Dense correspondence across scenes and its applications. IEEE Transactions on PAMI, 33, 978–994.CrossRef
go back to reference Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. IJCV, 60, 91–110.CrossRef Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. IJCV, 60, 91–110.CrossRef
go back to reference Malik, J., & Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America A, 7, 923–932.CrossRef Malik, J., & Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America A, 7, 923–932.CrossRef
go back to reference Menze, M., Heipke, C., & Geiger, A. (2015). Discrete optimization for optical flow. In GCPR. Menze, M., Heipke, C., & Geiger, A. (2015). Discrete optimization for optical flow. In GCPR.
go back to reference Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., et al. (2005). A comparison of affine region detectors. IJCV, 65, 43–72.CrossRef Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., et al. (2005). A comparison of affine region detectors. IJCV, 65, 43–72.CrossRef
go back to reference Muja, M., & Lowe, D.G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In International Conference on Computer Vision Theory and Application VISSAPP’09). INSTICC Press. Muja, M., & Lowe, D.G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In International Conference on Computer Vision Theory and Application VISSAPP’09). INSTICC Press.
go back to reference Papenberg, N., Bruhn, A., Brox, T., Didas, S., & Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. IJCV, 67, 141–158.CrossRef Papenberg, N., Bruhn, A., Brox, T., Didas, S., & Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. IJCV, 67, 141–158.CrossRef
go back to reference Philbin, J., Isard, M., Sivic, J., & Zisserman, A. (2010). Descriptor learning for efficient retrieval. In ECCV. Philbin, J., Isard, M., Sivic, J., & Zisserman, A. (2010). Descriptor learning for efficient retrieval. In ECCV.
go back to reference Ranftl, R., Bredies, K., & Pock, T. (2014). Non-local total generalized variation for optical flow estimation. In ECCV. Ranftl, R., Bredies, K., & Pock, T. (2014). Non-local total generalized variation for optical flow estimation. In ECCV.
go back to reference Revaud, J., Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015). EpicFlow: Edge-preserving interpolation of correspondences for optical flow. In CVPR. Revaud, J., Weinzaepfel, P., Harchaoui, Z., & Schmid, C. (2015). EpicFlow: Edge-preserving interpolation of correspondences for optical flow. In CVPR.
go back to reference Stoll, M., Volz, S., & Bruhn, A. (2012). Adaptive integration of feature matches into variational optical flow methods. In ACCV. Stoll, M., Volz, S., & Bruhn, A. (2012). Adaptive integration of feature matches into variational optical flow methods. In ACCV.
go back to reference Sun, D., Liu, C., & Pfister, H. (2014a). Local layering for joint motion estimation and occlusion detection. In CVPR. Sun, D., Liu, C., & Pfister, H. (2014a). Local layering for joint motion estimation and occlusion detection. In CVPR.
go back to reference Sun, D., Roth, S., & Black, M. (2014b). A quantitative analysis of current practices in optical flow estimation and the principles behind them. IJCV, 106, 115–137.CrossRef Sun, D., Roth, S., & Black, M. (2014b). A quantitative analysis of current practices in optical flow estimation and the principles behind them. IJCV, 106, 115–137.CrossRef
go back to reference Sun, J. (2012). Computing nearest-neighbor fields via propagation-assisted kd-trees. In CVPR. Sun, J. (2012). Computing nearest-neighbor fields via propagation-assisted kd-trees. In CVPR.
go back to reference Szeliski, R. (2010). Computer vision: Algorithms and applications. New York: Springer.MATH Szeliski, R. (2010). Computer vision: Algorithms and applications. New York: Springer.MATH
go back to reference Timofte, R., & Van Gool, L. (2015). Sparse flow: Sparse matching for small to large displacement optical flow. In Applications of Computer Vision (WACV). Timofte, R., & Van Gool, L. (2015). Sparse flow: Sparse matching for small to large displacement optical flow. In Applications of Computer Vision (WACV).
go back to reference Tola, E., Lepetit, V., & Fua, P. (2008). A fast local descriptor for dense matching. In CVPR. Tola, E., Lepetit, V., & Fua, P. (2008). A fast local descriptor for dense matching. In CVPR.
go back to reference Tola, E., Lepetit, V., & Fua, P. (2010). DAISY: An efficient dense descriptor applied to wide baseline stereo. IEEE Transactions on PAMI, 32, 815–830.CrossRef Tola, E., Lepetit, V., & Fua, P. (2010). DAISY: An efficient dense descriptor applied to wide baseline stereo. IEEE Transactions on PAMI, 32, 815–830.CrossRef
go back to reference Uchida, S.,&Sakoe, H. (1998). A monotonic and continuous two-dimensional warping based on dynamic programming. In ICPR. Uchida, S.,&Sakoe, H. (1998). A monotonic and continuous two-dimensional warping based on dynamic programming. In ICPR.
go back to reference Vogel, C., Roth, S., & Schindler, K. (2013a). An evaluation of data costs for optical flow. In GCPR. Vogel, C., Roth, S., & Schindler, K. (2013a). An evaluation of data costs for optical flow. In GCPR.
go back to reference Vogel, C., Schindler, K., & Roth, S. (2013b). Piecewise rigid scene flow. In ICCV. Vogel, C., Schindler, K., & Roth, S. (2013b). Piecewise rigid scene flow. In ICCV.
go back to reference Wedel, A., Cremers, D., Pock, T., & Bischof, H. (2009). Structure- and motion-adaptive regularization for high accuracy optic flow. In ICCV. Wedel, A., Cremers, D., Pock, T., & Bischof, H. (2009). Structure- and motion-adaptive regularization for high accuracy optic flow. In ICCV.
go back to reference Weinzaepfel, P., Revaud, J., Harchaoui, Z., & Schmid, C. (2013). Deepflow: Large displacement optical flow with deep matching. In ICCV. Weinzaepfel, P., Revaud, J., Harchaoui, Z., & Schmid, C. (2013). Deepflow: Large displacement optical flow with deep matching. In ICCV.
go back to reference Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., & Bischof, H. (2009). Anisotropic Huber-L1 optical flow. In BMVC. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., & Bischof, H. (2009). Anisotropic Huber-L1 optical flow. In BMVC.
go back to reference Wills, J., Agarwal, S., & Belongie, S. (2006). A feature-based approach for dense segmentation and estimation of large disparity motion. IJCV. Wills, J., Agarwal, S., & Belongie, S. (2006). A feature-based approach for dense segmentation and estimation of large disparity motion. IJCV.
go back to reference Xu, L., Jia, J., & Matsushita, Y. (2012). Motion detail preserving optical flow estimation. IEEE Transactions on PAMI, 34, 1744–1757.CrossRef Xu, L., Jia, J., & Matsushita, Y. (2012). Motion detail preserving optical flow estimation. IEEE Transactions on PAMI, 34, 1744–1757.CrossRef
go back to reference Yang, H., Lin, W., & Lu, J. (2014). DAISY filter flow: A generalized discrete approach to dense correspondences. In CVPR. Yang, H., Lin, W., & Lu, J. (2014). DAISY filter flow: A generalized discrete approach to dense correspondences. In CVPR.
go back to reference Young, D. M., & Rheinboldt, W. (1971). Iterative solution of large linear systems. New York: Academic Press. Young, D. M., & Rheinboldt, W. (1971). Iterative solution of large linear systems. New York: Academic Press.
go back to reference Zimmer, H., Bruhn, A., & Weickert, J. (2011). Optic flow in harmony. IJCV. Zimmer, H., Bruhn, A., & Weickert, J. (2011). Optic flow in harmony. IJCV.
Metadata
Title
DeepMatching: Hierarchical Deformable Dense Matching
Authors
Jerome Revaud
Philippe Weinzaepfel
Zaid Harchaoui
Cordelia Schmid
Publication date
01-12-2016
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 3/2016
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-016-0908-3

Other articles of this Issue 3/2016

International Journal of Computer Vision 3/2016 Go to the issue

Premium Partner