Skip to main content
Top
Published in: Journal of Iron and Steel Research International 9/2023

13-02-2023 | Original Paper

Deformation resistance prediction of tandem cold rolling based on grey wolf optimization and support vector regression

Authors: Ze-dong Wu, Xiao-chen Wang, Quan Yang, Dong Xu, Jian-wei Zhao, Jing-dong Li, Shu-zong Yan

Published in: Journal of Iron and Steel Research International | Issue 9/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the traditional rolling force model of tandem cold rolling mills, the calculation of the deformation resistance of the strip head does not consider the actual size and mechanical properties of the incoming material, which results in a mismatch between the deformation resistance setting and the actual state of the incoming material and thus affects the accuracy of the rolling force during the low-speed rolling process of the strip head. The inverse calculation of deformation resistance was derived to obtain the actual deformation resistance of the strip head in the tandem cold rolling process, and the actual process parameters of the strip in the hot and cold rolling processes were integrated to create the cross-process dataset as the basis to establish the support vector regression (SVR) model. The grey wolf optimization (GWO) algorithm was used to optimize the hyperparameters in the SVR model, and a deformation resistance prediction model based on GWO–SVR was established. Compared with the traditional model, the GWO–SVR model shows different degrees of improvement in each stand, with significant improvement in stands S3–S5. The prediction results of the GWO–SVR model were applied to calculate the head rolling setting of a 1420 mm tandem rolling mill. The head rolling force had a similar degree of improvement in accuracy to the deformation resistance, and the phenomenon of low head rolling force setting from stands S3 to S5 was obviously improved. Meanwhile, the thickness quality and shape quality of the strip head were improved accordingly, and the application results were consistent with expectations.
Literature
[2]
go back to reference J. Cao, T. Wang, Y. Cao, C. Song, B. Gao, B. Wang, Int. J. Adv. Manuf. Technol. 115 (2021) 319–328.CrossRef J. Cao, T. Wang, Y. Cao, C. Song, B. Gao, B. Wang, Int. J. Adv. Manuf. Technol. 115 (2021) 319–328.CrossRef
[3]
[4]
go back to reference W.G. Li, C. Liu, Y.T. Zhao, B. Liu, X.H. Liu, J. Iron Steel Res. Int. 24 (2017) 1177–1183.CrossRef W.G. Li, C. Liu, Y.T. Zhao, B. Liu, X.H. Liu, J. Iron Steel Res. Int. 24 (2017) 1177–1183.CrossRef
[5]
go back to reference G. Chen, G. Xu, H. Hu, Q. Yuan, Q. Zhang, Steel Res. Int. 89 (2018) 1800201.CrossRef G. Chen, G. Xu, H. Hu, Q. Yuan, Q. Zhang, Steel Res. Int. 89 (2018) 1800201.CrossRef
[7]
[8]
go back to reference A. Dimatteo, M. Vannucci, V. Colla, Int. J. Adv. Manuf. Technol. 66 (2013) 1511–1521.CrossRef A. Dimatteo, M. Vannucci, V. Colla, Int. J. Adv. Manuf. Technol. 66 (2013) 1511–1521.CrossRef
[10]
[11]
go back to reference P. Eyckens, H. Mulder, J. Gawad, H. Vegter, D. Roose, T. van den Boogaard, A. Van Bael, P. Van Houtte, Int. J. Plasticity 73 (2015) 119–141.CrossRef P. Eyckens, H. Mulder, J. Gawad, H. Vegter, D. Roose, T. van den Boogaard, A. Van Bael, P. Van Houtte, Int. J. Plasticity 73 (2015) 119–141.CrossRef
[12]
go back to reference M. Dzubinsky, F. Kovac, A. Petercakova, Scripta Mater. 47 (2002) 119–124.CrossRef M. Dzubinsky, F. Kovac, A. Petercakova, Scripta Mater. 47 (2002) 119–124.CrossRef
[13]
go back to reference J. Li, H. Yu, X.D. Cheng, L. Peng, Q.N. Shi, W.B. Ren, Rare Metal Materials and Engineering 45 (2016) 393–398. J. Li, H. Yu, X.D. Cheng, L. Peng, Q.N. Shi, W.B. Ren, Rare Metal Materials and Engineering 45 (2016) 393–398.
[14]
go back to reference D. Chae, S. Lee, S. Son, La Metallurgia Italiana 3 (2009) 55–62. D. Chae, S. Lee, S. Son, La Metallurgia Italiana 3 (2009) 55–62.
[15]
[16]
[17]
go back to reference J.S. Wang, Z.Y. Jiang, A.K. Tieu, X.H. Liu, G.D. Wang, J. Mater. Process. Technol. 162–163 (2005) 585–590.CrossRef J.S. Wang, Z.Y. Jiang, A.K. Tieu, X.H. Liu, G.D. Wang, J. Mater. Process. Technol. 162–163 (2005) 585–590.CrossRef
[18]
go back to reference H.N. Bu, Z.W. Yan, C.M. Zhang, D.H. Zhang, Appl. Mech. Mater. 551 (2014) 296–301.CrossRef H.N. Bu, Z.W. Yan, C.M. Zhang, D.H. Zhang, Appl. Mech. Mater. 551 (2014) 296–301.CrossRef
[19]
go back to reference S.H. Zhang, L.Z. Che, X.Y. Liu, Math. Problems Eng. 2021 (2021) 2500636. S.H. Zhang, L.Z. Che, X.Y. Liu, Math. Problems Eng. 2021 (2021) 2500636.
[20]
[21]
[22]
go back to reference A.N. Shkarin, S.M. Bel'skii, V.A. Pimenov, Metallurgist 64 (2020) 699–708.CrossRef A.N. Shkarin, S.M. Bel'skii, V.A. Pimenov, Metallurgist 64 (2020) 699–708.CrossRef
[23]
go back to reference W.G. Li, L. Xie, Y.T. Zhao, Z.X. Li, W.B. Wang, J. Iron Steel Res. Int. 27 (2020) 1045–1053.CrossRef W.G. Li, L. Xie, Y.T. Zhao, Z.X. Li, W.B. Wang, J. Iron Steel Res. Int. 27 (2020) 1045–1053.CrossRef
[24]
go back to reference L. Li, H. Xie, T. Liu, X. Li, X. Liu, M. Huo, E. Wang, J. Li, H. Liu, L. Sun, Steel Res. Int. 93 (2022) 2100359.CrossRef L. Li, H. Xie, T. Liu, X. Li, X. Liu, M. Huo, E. Wang, J. Li, H. Liu, L. Sun, Steel Res. Int. 93 (2022) 2100359.CrossRef
[25]
go back to reference J.S. Wang, Z. Jiao, C. Lu, X.H. Liu, G.D. Wang, in: 4th International ESAFORM Conference on Material Forming, Springer Liège, Belgium, 2001, pp. 863–866. J.S. Wang, Z. Jiao, C. Lu, X.H. Liu, G.D. Wang, in: 4th International ESAFORM Conference on Material Forming, Springer Liège, Belgium, 2001, pp. 863–866.
[26]
[27]
go back to reference J. Sun, P.F. Shan, Z. Wei, Y.H. Hu, Q.L. Wang, W. Peng, D.H. Zhang, J. Iron Steel Res. Int. 28 (2021) 563–573.CrossRef J. Sun, P.F. Shan, Z. Wei, Y.H. Hu, Q.L. Wang, W. Peng, D.H. Zhang, J. Iron Steel Res. Int. 28 (2021) 563–573.CrossRef
[28]
go back to reference W. Peng, J.G. Ding, D.H. Zhang, D.W. Zhao, J. Braz. Soc. Mech. Sci. Eng. 39 (2017) 5057–5067.CrossRef W. Peng, J.G. Ding, D.H. Zhang, D.W. Zhao, J. Braz. Soc. Mech. Sci. Eng. 39 (2017) 5057–5067.CrossRef
[29]
[30]
go back to reference X.C. Wang, Q. Yang, Z.Y. Jiang, J.W. Xu, Steel Res. Int. 85 (2014) 1560–1570.CrossRef X.C. Wang, Q. Yang, Z.Y. Jiang, J.W. Xu, Steel Res. Int. 85 (2014) 1560–1570.CrossRef
[31]
go back to reference H.L. Liu, L.L. Liu, M.Y. Ma, L.Q. Chen, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 991–1000.CrossRef H.L. Liu, L.L. Liu, M.Y. Ma, L.Q. Chen, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 991–1000.CrossRef
[32]
go back to reference H. Ding, Y. Zhang, S. Kamado, Trans. Nonferrous Met. Soc. China 24 (2014) 2761–2766.CrossRef H. Ding, Y. Zhang, S. Kamado, Trans. Nonferrous Met. Soc. China 24 (2014) 2761–2766.CrossRef
[33]
go back to reference Y.B. Tan, C. Tian, W.C. Liu, S. Xiang, F. Zhao, Y.L. Liang, J. Mater. Eng. Perform. 27 (2018) 1803–1811.CrossRef Y.B. Tan, C. Tian, W.C. Liu, S. Xiang, F. Zhao, Y.L. Liang, J. Mater. Eng. Perform. 27 (2018) 1803–1811.CrossRef
[34]
go back to reference Q. Wu, K. Fu, R. Wu, J. Zhang, L. Hou, M. Zhang, Adv. Mater. Sci. Eng. 2019 (2019) 4813798. Q. Wu, K. Fu, R. Wu, J. Zhang, L. Hou, M. Zhang, Adv. Mater. Sci. Eng. 2019 (2019) 4813798.
[35]
go back to reference X.C. Sha, D.Z. Li, Y.T. Zhang, X.G. Zhang, Y.Y. Li, Ironmak. Steelmak. 31 (2004) 169–175.CrossRef X.C. Sha, D.Z. Li, Y.T. Zhang, X.G. Zhang, Y.Y. Li, Ironmak. Steelmak. 31 (2004) 169–175.CrossRef
[36]
go back to reference J.Z. Xue, Z.Z. Zhao, D. Tang, H. Li, H.H. Wu, W.L. Xiong, L. Liang, Y. Huang, J. Iron Steel Res. Int. 28 (2021) 346–359.CrossRef J.Z. Xue, Z.Z. Zhao, D. Tang, H. Li, H.H. Wu, W.L. Xiong, L. Liang, Y. Huang, J. Iron Steel Res. Int. 28 (2021) 346–359.CrossRef
[37]
go back to reference Z.X. Fu, G.W. Yang, R.Y. Han, Y.W. Xu, X.P. Mao, S.Q. Bao, G. Zhao, J. Iron Steel Res. Int. 29 (2022) 484–493.CrossRef Z.X. Fu, G.W. Yang, R.Y. Han, Y.W. Xu, X.P. Mao, S.Q. Bao, G. Zhao, J. Iron Steel Res. Int. 29 (2022) 484–493.CrossRef
[39]
[40]
go back to reference S. Mirjalili, S.M. Mirjalili, A. Lewis, Adv. Eng. Software 69 (2014) 46–61.CrossRef S. Mirjalili, S.M. Mirjalili, A. Lewis, Adv. Eng. Software 69 (2014) 46–61.CrossRef
[41]
[42]
go back to reference C. Sunli, S. Jun, M. Hanping, W. Xiaohong, W. Pei, Z. Xiaodong, J. Sci. Food Agric. 98 (2018) 1453–1459.CrossRef C. Sunli, S. Jun, M. Hanping, W. Xiaohong, W. Pei, Z. Xiaodong, J. Sci. Food Agric. 98 (2018) 1453–1459.CrossRef
[43]
go back to reference Z. Yu, X. Shi, J. Zhou, X. Chen, X. Miao, B. Teng, T. Ipangelwa, Nat. Resour. Res. 29 (2020) 843–865.CrossRef Z. Yu, X. Shi, J. Zhou, X. Chen, X. Miao, B. Teng, T. Ipangelwa, Nat. Resour. Res. 29 (2020) 843–865.CrossRef
Metadata
Title
Deformation resistance prediction of tandem cold rolling based on grey wolf optimization and support vector regression
Authors
Ze-dong Wu
Xiao-chen Wang
Quan Yang
Dong Xu
Jian-wei Zhao
Jing-dong Li
Shu-zong Yan
Publication date
13-02-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 9/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00894-1

Other articles of this Issue 9/2023

Journal of Iron and Steel Research International 9/2023 Go to the issue

Premium Partners