Skip to main content
Top
Published in: Journal of Materials Science 8/2018

02-11-2017 | Interface Behavior

Deformation response of grain boundary networks at high temperature

Authors: Laura Smith, Diana Farkas

Published in: Journal of Materials Science | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The deformation response of random grain boundary networks as a function of temperature and strain rate is explored using molecular dynamics atomistic simulations and an embedded atom method interatomic potential. We find that deformation at higher temperatures promotes both dislocation emission and grain boundary accommodation processes. The results allow estimating the activation energies and volumes for the deformation process. We find activation energy values for the deformation process similar to those for grain boundary diffusion and activation volumes consistent with an atomic shuffling mechanism. Our results suggest a picture of the deformation process as governed by the combination of the applied stress and thermally activated processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626CrossRef Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626CrossRef
2.
go back to reference Ma E (2006) Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58:49–53CrossRef Ma E (2006) Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58:49–53CrossRef
3.
go back to reference Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr Mater 58:874–877CrossRef Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr Mater 58:874–877CrossRef
4.
go back to reference Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT (2011) Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int J Plast 27:121–146CrossRef Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT (2011) Texture evolution via combined slip and deformation twinning in rolled silver–copper cast eutectic nanocomposite. Int J Plast 27:121–146CrossRef
5.
go back to reference Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296CrossRef Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296CrossRef
6.
go back to reference Van Swygenhoven H, Farkas D, Caro A (2000) Grain-boundary structures in polycrystalline metals at the nanoscale. Phys Rev B 62:831–838CrossRef Van Swygenhoven H, Farkas D, Caro A (2000) Grain-boundary structures in polycrystalline metals at the nanoscale. Phys Rev B 62:831–838CrossRef
7.
go back to reference Tschopp MA, McDowell DL (2007) Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos Mag 87:3871–3892CrossRef Tschopp MA, McDowell DL (2007) Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos Mag 87:3871–3892CrossRef
8.
go back to reference Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRef Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277CrossRef
9.
go back to reference Farkas D, Patrick L (2009) Tensile deformation of fcc Ni as described by an EAM potential. Philos Mag 89:3435–3450CrossRef Farkas D, Patrick L (2009) Tensile deformation of fcc Ni as described by an EAM potential. Philos Mag 89:3435–3450CrossRef
10.
go back to reference Jeon JB, Lee B-J, Chang YW (2011) Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scr Mater 64:494–497CrossRef Jeon JB, Lee B-J, Chang YW (2011) Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scr Mater 64:494–497CrossRef
11.
go back to reference McMurtrey MD, Was GS, Patrick L, Farkas D (2011) Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy. Mater Sci Eng Struct Mater Prop Microstruct Process 528:3730–3740CrossRef McMurtrey MD, Was GS, Patrick L, Farkas D (2011) Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy. Mater Sci Eng Struct Mater Prop Microstruct Process 528:3730–3740CrossRef
12.
go back to reference Stukowski A, Albe K, Farkas D (2010) Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys Rev B 82:224103CrossRef Stukowski A, Albe K, Farkas D (2010) Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys Rev B 82:224103CrossRef
13.
go back to reference Vo NQ, Averback RS, Bellon P, Caro A (2009) Yield strength in nanocrystalline Cu during high strain rate deformation. Scr Mater 61:76–79CrossRef Vo NQ, Averback RS, Bellon P, Caro A (2009) Yield strength in nanocrystalline Cu during high strain rate deformation. Scr Mater 61:76–79CrossRef
14.
go back to reference Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382CrossRef Asaro RJ, Suresh S (2005) Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater 53:3369–3382CrossRef
15.
go back to reference Lee TC, Robertson IM, Birnbaum HK (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23:799–803CrossRef Lee TC, Robertson IM, Birnbaum HK (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23:799–803CrossRef
16.
go back to reference Lee TC, Robertson IM, Birnbaum HK (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62:131–153CrossRef Lee TC, Robertson IM, Birnbaum HK (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62:131–153CrossRef
17.
go back to reference Lee TC, Robertson IM, Birnbaum HK (1990) In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A (Phys Metall Mater Sci) 21A:2437–2447CrossRef Lee TC, Robertson IM, Birnbaum HK (1990) In situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A (Phys Metall Mater Sci) 21A:2437–2447CrossRef
18.
go back to reference Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater. 26:203–206CrossRef Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater. 26:203–206CrossRef
19.
go back to reference Suri S, Viswanathan GB, Neeraj T, Hou DH, Mills MJ (1999) Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy. Acta Mater 47:1019–1034CrossRef Suri S, Viswanathan GB, Neeraj T, Hou DH, Mills MJ (1999) Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an α/β titanium alloy. Acta Mater 47:1019–1034CrossRef
20.
go back to reference Dingley DJ, Pond RC (1979) Interaction of crystal dislocations with grain-boundaries. Acta Metall 27:667–682CrossRef Dingley DJ, Pond RC (1979) Interaction of crystal dislocations with grain-boundaries. Acta Metall 27:667–682CrossRef
21.
go back to reference de Koning M, Miller R, Bulatov VV, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A-Phys Condens Matter Struct Defect Mech Prop 82:2511–2527 de Koning M, Miller R, Bulatov VV, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A-Phys Condens Matter Struct Defect Mech Prop 82:2511–2527
22.
go back to reference Jin ZH, Gumbsch P, Albe K et al (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56:1126–1135CrossRef Jin ZH, Gumbsch P, Albe K et al (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56:1126–1135CrossRef
23.
go back to reference Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088CrossRef Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088CrossRef
24.
go back to reference Kumar R, Szekely F, Van der Giessen E (2010) Modelling dislocation transmission across tilt grain boundaries in 2D. Comput Mater Sci 49:46–54CrossRef Kumar R, Szekely F, Van der Giessen E (2010) Modelling dislocation transmission across tilt grain boundaries in 2D. Comput Mater Sci 49:46–54CrossRef
25.
go back to reference Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRef Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRef
26.
go back to reference Smith L, Farkas D (2014) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRef Smith L, Farkas D (2014) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRef
28.
go back to reference Tucker GJ, Tschopp MA, McDowell DL (2010) Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater 58:6464–6473CrossRef Tucker GJ, Tschopp MA, McDowell DL (2010) Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater 58:6464–6473CrossRef
29.
go back to reference Du JP, Wang YJ, Lo YC, Wan L, Ogata S (2016) Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: an accelerated molecular dynamics study. Phys Rev B 94:104110CrossRef Du JP, Wang YJ, Lo YC, Wan L, Ogata S (2016) Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: an accelerated molecular dynamics study. Phys Rev B 94:104110CrossRef
30.
go back to reference Jiao SY, Kulkarni Y (2015) Molecular dynamics study of creep mechanisms in nanotwinned metals. Comput Mater Sci 110:254–260CrossRef Jiao SY, Kulkarni Y (2015) Molecular dynamics study of creep mechanisms in nanotwinned metals. Comput Mater Sci 110:254–260CrossRef
33.
go back to reference Spearot DE, McDowell DL (2009) Atomistic modeling of grain boundaries and dislocation processes in metallic polycrystalline materials. J Eng Mater Technol-Trans ASME 131:041204CrossRef Spearot DE, McDowell DL (2009) Atomistic modeling of grain boundaries and dislocation processes in metallic polycrystalline materials. J Eng Mater Technol-Trans ASME 131:041204CrossRef
34.
go back to reference Farkas D, Curtin WA (2005) Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater Sci Eng A-Struct Mater Prop Microstruct Process 412:316–322CrossRef Farkas D, Curtin WA (2005) Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater Sci Eng A-Struct Mater Prop Microstruct Process 412:316–322CrossRef
35.
go back to reference Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRef Smith L, Farkas D (2013) Non-planar grain boundary structures in fcc metals and their role in nano-scale deformation mechanisms. Philos Mag 94:152–173CrossRef
36.
go back to reference Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 60:22–25CrossRef Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 60:22–25CrossRef
37.
go back to reference Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407CrossRef Mishin Y, Farkas D, Mehl MJ, Papaconstantopoulos DA (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407CrossRef
38.
go back to reference Wolf D, Yip S (1992) Materials interfaces: atomic-level structure and properties. Springer, Berlin Wolf D, Yip S (1992) Materials interfaces: atomic-level structure and properties. Springer, Berlin
39.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular-dynamics. J Comput Phys 117:1–19CrossRef
40.
go back to reference Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012CrossRef Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012CrossRef
41.
go back to reference Holm EA, Olmsted DL, Foiles SM (2010) Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scr Mater 63:905–908CrossRef Holm EA, Olmsted DL, Foiles SM (2010) Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scr Mater 63:905–908CrossRef
42.
go back to reference Rohrer GS, Holm EA, Rollett AD, Foiles SM, Li J, Olmsted DL (2010) Comparing calculated and measured grain boundary energies in nickel. Acta Mater 58:5063–5069CrossRef Rohrer GS, Holm EA, Rollett AD, Foiles SM, Li J, Olmsted DL (2010) Comparing calculated and measured grain boundary energies in nickel. Acta Mater 58:5063–5069CrossRef
43.
go back to reference Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703CrossRef Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703CrossRef
44.
go back to reference Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals-II: grain boundary mobility. Acta Mater 57:3704–3713CrossRef Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals-II: grain boundary mobility. Acta Mater 57:3704–3713CrossRef
45.
go back to reference Luo J, Li MQ, Yu WX, Li H (2010) The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy. Mater Des 31:741–748CrossRef Luo J, Li MQ, Yu WX, Li H (2010) The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy. Mater Des 31:741–748CrossRef
46.
go back to reference Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A-Struct Mater Prop Microstruct Process 390:334–343CrossRef Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A-Struct Mater Prop Microstruct Process 390:334–343CrossRef
47.
go back to reference Romhanji E, Dudukovska A, Glisic D (2002) The effect of temperature on strain-rate sensitivity in high strength Al–Mg alloy sheet. J Mater Process Technol 125:193–198CrossRef Romhanji E, Dudukovska A, Glisic D (2002) The effect of temperature on strain-rate sensitivity in high strength Al–Mg alloy sheet. J Mater Process Technol 125:193–198CrossRef
50.
go back to reference Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–291CrossRef Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–291CrossRef
51.
go back to reference Bokstein BS, Brose HD, Trusov LI, Khvostantseva TP (1995) Diffusion in nanocrystalline nickel. Nanostruct Mater 6:873–876CrossRef Bokstein BS, Brose HD, Trusov LI, Khvostantseva TP (1995) Diffusion in nanocrystalline nickel. Nanostruct Mater 6:873–876CrossRef
52.
go back to reference Prokoshkina D, Esin VA, Wilde G, Divinski SV (2013) Grain boundary width, energy and self-diffusion in nickel: effect of material purity. Acta Mater 61:5188–5197CrossRef Prokoshkina D, Esin VA, Wilde G, Divinski SV (2013) Grain boundary width, energy and self-diffusion in nickel: effect of material purity. Acta Mater 61:5188–5197CrossRef
54.
go back to reference Karma A, Trautt ZT, Mishin Y (2012) Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys Rev Lett 109:095501CrossRef Karma A, Trautt ZT, Mishin Y (2012) Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys Rev Lett 109:095501CrossRef
55.
go back to reference Frolov T, Asta M, Mishin Y (2016) Phase transformations at interfaces: observations from atomistic modeling. Curr Opin Solid State Mater Sci 20:308–315CrossRef Frolov T, Asta M, Mishin Y (2016) Phase transformations at interfaces: observations from atomistic modeling. Curr Opin Solid State Mater Sci 20:308–315CrossRef
56.
go back to reference Fensin SJ, Asta M, Hoagland RG (2012) Temperature dependence of the structure and shear response of a Sigma 11 asymmetric tilt grain boundary in copper from molecular-dynamics. Philos Mag 92:4320–4333CrossRef Fensin SJ, Asta M, Hoagland RG (2012) Temperature dependence of the structure and shear response of a Sigma 11 asymmetric tilt grain boundary in copper from molecular-dynamics. Philos Mag 92:4320–4333CrossRef
Metadata
Title
Deformation response of grain boundary networks at high temperature
Authors
Laura Smith
Diana Farkas
Publication date
02-11-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1760-8

Other articles of this Issue 8/2018

Journal of Materials Science 8/2018 Go to the issue

Premium Partners