Skip to main content
Top
Published in: Quantum Information Processing 2/2024

01-02-2024

Denoising quantum mixed states using quantum autoencoders

Author: Ming-Ming Wang

Published in: Quantum Information Processing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The presence of noise affects the process of quantum computing and quantum communication, and quantum autoencoders (QAEs) provide a new solution for dealing with this problem. Previous study has shown that QAEs could denoise pure quantum states subject to spin-flip errors and random unitary noise (Bondarenko and Feldmann Phys Rev Lett 124: 130502, 2020). However, avoiding or reducing the interference of noise on mixed states remains an interesting problem in quantum communication and quantum computing. In this paper, the denoising effect of QAEs for mixed states is studied. We investigate the denoising effect of QAEs for a specific type of mixed states in four types of noise usually encountered in the real world, i.e., the bit-flip, the phase-flip, the depolarizing, and the amplitude-damping noise. Simulation results show that the QAEs can significantly denoise four types of noise on mixed states with different noisy and mixed parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, pp. 45–85. MIT Press, Cambridge (2016) Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, pp. 45–85. MIT Press, Cambridge (2016)
3.
go back to reference Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11 (2017)CrossRef Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11 (2017)CrossRef
4.
go back to reference Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27 (2016)CrossRef Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27 (2016)CrossRef
5.
go back to reference Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)MathSciNetCrossRef Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)MathSciNetCrossRef
6.
go back to reference Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)ADSCrossRef Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)ADSCrossRef
8.
go back to reference Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172 (2015)ADSCrossRef Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172 (2015)ADSCrossRef
9.
go back to reference Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)ADSCrossRefPubMed Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)ADSCrossRefPubMed
11.
go back to reference Ronald, C.: Quantum learning. In: New Directions in Cognitive Science: Proceedings of the International Symposium, pp. 4–9 (1995) Ronald, C.: Quantum learning. In: New Directions in Cognitive Science: Proceedings of the International Symposium, pp. 4–9 (1995)
12.
go back to reference Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)ADSCrossRefPubMed Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)ADSCrossRefPubMed
13.
go back to reference Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)ADSCrossRefPubMed Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140504 (2015)ADSCrossRefPubMed
14.
go back to reference Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)CrossRef Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)CrossRef
15.
go back to reference Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. In: Conference of the Canadian Society for Computational Studies of Intelligence, pp. 431–442 (2006) Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. In: Conference of the Canadian Society for Computational Studies of Intelligence, pp. 431–442 (2006)
16.
17.
go back to reference Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning, arXiv preprint, arXiv:1307.0411, (2013) Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning, arXiv preprint, arXiv:​1307.​0411, (2013)
18.
go back to reference Behrman, E., Niemel, J., Steck, J.: A quantum dot neural network. In: Proceedings of the 4th Workshop on Physics and Computation, pp. 22–24 (1996) Behrman, E., Niemel, J., Steck, J.: A quantum dot neural network. In: Proceedings of the 4th Workshop on Physics and Computation, pp. 22–24 (1996)
19.
go back to reference Ventura, D., Martinez, T., Smith, G.D., Steele, N.C., Albrecht, R.F.: An artificial neuron with quantum mechanical properties. In: Artificial Neural Nets and Genetic Algorithms, pp. 482–485 (1998) Ventura, D., Martinez, T., Smith, G.D., Steele, N.C., Albrecht, R.F.: An artificial neuron with quantum mechanical properties. In: Artificial Neural Nets and Genetic Algorithms, pp. 482–485 (1998)
20.
go back to reference Matsui, N., Takai, M., Nishimura, H.: A network model based on Qubitlike neuron corresponding to quantum circuit. Electron. Commun. Jpn. 83(10), 67 (2000)CrossRef Matsui, N., Takai, M., Nishimura, H.: A network model based on Qubitlike neuron corresponding to quantum circuit. Electron. Commun. Jpn. 83(10), 67 (2000)CrossRef
21.
go back to reference Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A 89(3), 032333 (2014)ADSCrossRef Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum walks on graphs representing the firing patterns of a quantum neural network. Phys. Rev. A 89(3), 032333 (2014)ADSCrossRef
22.
go back to reference Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020)ADSCrossRefPubMedPubMedCentral Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020)ADSCrossRefPubMedPubMedCentral
23.
go back to reference Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8(2), 021050 (2018) Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8(2), 021050 (2018)
25.
go back to reference Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273 (2019)CrossRef Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273 (2019)CrossRef
27.
go back to reference Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4), 045001 (2017)ADSCrossRef Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quantum Sci. Technol. 2(4), 045001 (2017)ADSCrossRef
28.
go back to reference Bondarenko, D., Feldmann, P.: Quantum autoencoders to denoise quantum data. Phys. Rev. Lett. 124(13), 130502 (2020)ADSCrossRefPubMed Bondarenko, D., Feldmann, P.: Quantum autoencoders to denoise quantum data. Phys. Rev. Lett. 124(13), 130502 (2020)ADSCrossRefPubMed
29.
go back to reference Bravo-Prieto, C.: Quantum autoencoders with enhanced data encoding. Mach. Learn. Sci. Technol. 2, 035028 (2021)CrossRef Bravo-Prieto, C.: Quantum autoencoders with enhanced data encoding. Mach. Learn. Sci. Technol. 2, 035028 (2021)CrossRef
30.
go back to reference Pepper, A., Tischler, N., Pryde, G.J.: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning. Phys. Rev. Lett. 122(6), 060501 (2019)ADSCrossRefPubMed Pepper, A., Tischler, N., Pryde, G.J.: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning. Phys. Rev. Lett. 122(6), 060501 (2019)ADSCrossRefPubMed
31.
go back to reference Huang, C.J., Ma, H., Yin, Q., Tang, J.F., Dong, D., Chen, C., Xiang, G.Y., Li, C.F., Guo, G.C.: Realization of a quantum autoencoder for lossless compression of quantum data. Phys. Rev. A 102(3), 032412 (2020)ADSCrossRef Huang, C.J., Ma, H., Yin, Q., Tang, J.F., Dong, D., Chen, C., Xiang, G.Y., Li, C.F., Guo, G.C.: Realization of a quantum autoencoder for lossless compression of quantum data. Phys. Rev. A 102(3), 032412 (2020)ADSCrossRef
32.
go back to reference Locher, D.F., Cardarelli, L., Müller, M.: Quantum error correction with quantum autoencoders. Quantum 7, 942 (2023)CrossRef Locher, D.F., Cardarelli, L., Müller, M.: Quantum error correction with quantum autoencoders. Quantum 7, 942 (2023)CrossRef
33.
go back to reference Khoshaman, A., Vinci, W., Denis, B., Andriyash, E., Sadeghi, H., Amin, M.H.: Quantum variational autoencoder. Quantum Sci. Technol. 4(1), 014001 (2018)ADSCrossRef Khoshaman, A., Vinci, W., Denis, B., Andriyash, E., Sadeghi, H., Amin, M.H.: Quantum variational autoencoder. Quantum Sci. Technol. 4(1), 014001 (2018)ADSCrossRef
34.
go back to reference Achache, T., Horesh, L., Smolin, J.: Denoising quantum states with quantum autoencoders - theory and applications, arXiv preprint, arXiv:2012.14714, (2020) Achache, T., Horesh, L., Smolin, J.: Denoising quantum states with quantum autoencoders - theory and applications, arXiv preprint, arXiv:​2012.​14714, (2020)
35.
go back to reference Cao, C., Wang, X.: Noise-assisted quantum autoencoder. Phys. Rev. Appl. 15(5), 054012 (2021)ADSCrossRef Cao, C., Wang, X.: Noise-assisted quantum autoencoder. Phys. Rev. Appl. 15(5), 054012 (2021)ADSCrossRef
36.
go back to reference Kong, W., Farooq, M.U., Yung, M.H., Guo, G., Wang, X., Zhang, X.M.: Generic detection-based error mitigation using quantum autoencoders. Phys. Rev. A 103(4), L040403 (2021)CrossRef Kong, W., Farooq, M.U., Yung, M.H., Guo, G., Wang, X., Zhang, X.M.: Generic detection-based error mitigation using quantum autoencoders. Phys. Rev. A 103(4), L040403 (2021)CrossRef
37.
38.
go back to reference Tran, Q.H., Kikuchi, S., Oshima, H.: Variational denoising for variational quantum eigensolver, arXiv preprint, arXiv:2304.00549, (2023) Tran, Q.H., Kikuchi, S., Oshima, H.: Variational denoising for variational quantum eigensolver, arXiv preprint, arXiv:​2304.​00549, (2023)
39.
go back to reference Mok, W.K., Zhang, H., Haug, T., Luo, X., Lo, G.Q., Cai, H., Kim, M.S., Liu, A.Q., Kwek, L.C.: Rigorous noise reduction with quantum autoencoders, arXiv preprint, arXiv:2308.16153, (2023) Mok, W.K., Zhang, H., Haug, T., Luo, X., Lo, G.Q., Cai, H., Kim, M.S., Liu, A.Q., Kwek, L.C.: Rigorous noise reduction with quantum autoencoders, arXiv preprint, arXiv:​2308.​16153, (2023)
40.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
42.
43.
go back to reference Wang, X., Yu, C.S., Yi, X.X.: An alternative quantum fidelity for mixed states of qudits. Phys. Lett. A 373(1), 58 (2008)ADSCrossRef Wang, X., Yu, C.S., Yi, X.X.: An alternative quantum fidelity for mixed states of qudits. Phys. Lett. A 373(1), 58 (2008)ADSCrossRef
44.
go back to reference Liang, Y.C., Yeh, Y.H., Mendonça, P.E.M.F., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)ADSMathSciNetCrossRefPubMed Liang, Y.C., Yeh, Y.H., Mendonça, P.E.M.F., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)ADSMathSciNetCrossRefPubMed
Metadata
Title
Denoising quantum mixed states using quantum autoencoders
Author
Ming-Ming Wang
Publication date
01-02-2024
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2024
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04239-z

Other articles of this Issue 2/2024

Quantum Information Processing 2/2024 Go to the issue