Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Density Gradient Ultracentrifugation of Colloidal Nanostructures

Authors : Liang Luo, Qixian Xie, Yinglan Liu

Published in: Nanoseparation Using Density Gradient Ultracentrifugation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

According to the centrifugation theory, various factors, such as the media density (ρm), radius (r) and thickness (h) of nanostructures, and solvation shell thickness (t) in different media, will directly influence the particle behavior during the density gradient centrifugation process. Density gradient centrifugation has become a promising tool to purify nanomaterials, such as metal nanostructures, carbon materials (carbon nanotubes and graphene), non-metal nanostructures (e.g., rare-earth nanostructures and oxide nanostructures). For the practical separation, as demonstrated in previous chapters, on the basis of the theoretical analysis of the target nanostructures and the preliminary separation, one can optimize the centrifugation according to the comprehensive consideration. While after all, the optimization direction of nanoseparation should be mainly focused on the net density of nanostructures and media. In this chapter, we will discuss the separation examples according to the dimensional difference of colloidal nanostructures, including 0D, 1D, 2D nanostructures, and assemblies/clusters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sun X, Tabakman SM, Seo WS et al (2009) Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Edit 48 (5):939–942CrossRef Sun X, Tabakman SM, Seo WS et al (2009) Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Edit 48 (5):939–942CrossRef
2.
go back to reference Akbulut O, Mace CR, Martinez RV et al (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRef Akbulut O, Mace CR, Martinez RV et al (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRef
3.
go back to reference Peng W, Mahfouz R, Pan J et al (2013) Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5(11):5017–5026CrossRef Peng W, Mahfouz R, Pan J et al (2013) Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5(11):5017–5026CrossRef
4.
go back to reference Bai L, Ma X, Liu J et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337CrossRef Bai L, Ma X, Liu J et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337CrossRef
5.
go back to reference Hu C, Chen Y (2015) Uniformization of silica particles by theory directed rate-zonal centrifugation to build high quality photonic crystals. Chem Eng J 271:128–134CrossRef Hu C, Chen Y (2015) Uniformization of silica particles by theory directed rate-zonal centrifugation to build high quality photonic crystals. Chem Eng J 271:128–134CrossRef
6.
go back to reference Mastronardi ML, Hennrich F, Henderson EJ et al (2011) Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J Am Chem Soc 133(31):11928–11931CrossRef Mastronardi ML, Hennrich F, Henderson EJ et al (2011) Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J Am Chem Soc 133(31):11928–11931CrossRef
7.
go back to reference Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249CrossRef Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249CrossRef
8.
go back to reference Li S, Chang Z, Liu J et al (2011) Separation of gold nanorods using density gradient ultracentrifugation. Nano Res 4(8):723–728CrossRef Li S, Chang Z, Liu J et al (2011) Separation of gold nanorods using density gradient ultracentrifugation. Nano Res 4(8):723–728CrossRef
9.
go back to reference Xiong B, Cheng J, Qiao Y et al (2011) Separation of nanorods by density gradient centrifugation. J Chromatogr A 1218(25):3823–3829CrossRef Xiong B, Cheng J, Qiao Y et al (2011) Separation of nanorods by density gradient centrifugation. J Chromatogr A 1218(25):3823–3829CrossRef
10.
go back to reference Dong S, Wang Y, Tu Y et al (2016) Separation of gold nanorods by viscosity gradient centrifugation. Microchim Acta 183(3):1269–1273CrossRef Dong S, Wang Y, Tu Y et al (2016) Separation of gold nanorods by viscosity gradient centrifugation. Microchim Acta 183(3):1269–1273CrossRef
11.
go back to reference Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718CrossRef Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718CrossRef
12.
go back to reference Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8(5):1417–1422CrossRef Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8(5):1417–1422CrossRef
13.
go back to reference Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65CrossRef Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65CrossRef
14.
go back to reference Green AA, Hersam MC (2009) Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotechnol 4(1):64–70CrossRef Green AA, Hersam MC (2009) Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotechnol 4(1):64–70CrossRef
15.
go back to reference Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036CrossRef Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036CrossRef
16.
go back to reference Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef
17.
go back to reference Sun X, Luo D, Liu J et al (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6):3381–3389CrossRef Sun X, Luo D, Liu J et al (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6):3381–3389CrossRef
18.
go back to reference Agrawal KV, Topuz B, Jiang Z et al (2013) Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J 59(9):3458–3467CrossRef Agrawal KV, Topuz B, Jiang Z et al (2013) Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J 59(9):3458–3467CrossRef
20.
go back to reference Chen G, Wang Y, Tan LH et al (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131(12):4218–4219CrossRef Chen G, Wang Y, Tan LH et al (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131(12):4218–4219CrossRef
21.
go back to reference Chen G, Wang Y, Yang M et al (2010) Measuring ensemble-averaged surface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132(11):3644–3645CrossRef Chen G, Wang Y, Yang M et al (2010) Measuring ensemble-averaged surface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132(11):3644–3645CrossRef
22.
go back to reference Deng L, Wang X, Kuang Y et al (2015) Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res 8(9):2810–2821CrossRef Deng L, Wang X, Kuang Y et al (2015) Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res 8(9):2810–2821CrossRef
Metadata
Title
Density Gradient Ultracentrifugation of Colloidal Nanostructures
Authors
Liang Luo
Qixian Xie
Yinglan Liu
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5190-6_5

Premium Partners