Skip to main content
Top
Published in: Quantum Information Processing 2/2015

01-02-2015

Depth optimization for topological quantum circuits

Authors: Mohammad AlFailakawi, Imtiaz Ahmad, Laila AlTerkawi, Suha Hamdan

Published in: Quantum Information Processing | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Topological quantum computing (TQC) model is one of the most promising models for quantum computation. A circuit implemented under TQC is optimized by reducing its depth due to special construction requirements in such technology. In this work, we propose a hybrid approach that combines a left-edge greedy heuristic with genetic algorithm (GA) to minimize circuit depth through combined line and gate ordering. In our implementation, GA is used to find line ordering, whereas the left edge is used to reduce circuit depth by taking into consideration overlap constraints imposed by line ordering. Moreover, the proposed algorithm can merge gates together realizing circuit with multi-target gates to provide reduced circuit depth. Experimental results on random benchmark circuits show that the proposed algorithm was able to reduce circuit depth by 42 % on average for CNOT circuits, with additional 5 % savings when multi-target optimization is used. Results on RevLib benchmarks revealed a typical enhancement of 21 % and an additional 11 % when multi-target gates are allowed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)
2.
go back to reference Sarma, S.D., Freedman, M., Nayak, C.: Topological quantum computation. Phys. Today 59(7), 32–38 (2006) Sarma, S.D., Freedman, M., Nayak, C.: Topological quantum computation. Phys. Today 59(7), 32–38 (2006)
4.
go back to reference Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083032 (2009)ADSCrossRef Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083032 (2009)ADSCrossRef
5.
go back to reference Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80(5), 052312 (2009). (14 pages)ADSCrossRef Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80(5), 052312 (2009). (14 pages)ADSCrossRef
6.
go back to reference Herrera-Martí, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032332 (2010)ADSCrossRef Herrera-Martí, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032332 (2010)ADSCrossRef
7.
go back to reference Brown, B.J., Son, W., Kraus, C.V., Fazio, R., Vedral, V.: Generating topological order from a two-dimensional cluster state using a duality mapping. New J. Phys. 13(6), 065010 (2011) Brown, B.J., Son, W., Kraus, C.V., Fazio, R., Vedral, V.: Generating topological order from a two-dimensional cluster state using a duality mapping. New J. Phys. 13(6), 065010 (2011)
9.
go back to reference Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85(6), 062318 (2012)ADSCrossRef Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85(6), 062318 (2012)ADSCrossRef
10.
11.
go back to reference Alicea, J., Oreg, Y., Refael, G., von Oppen, F., Fisher, M.P.A.: Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011)CrossRef Alicea, J., Oreg, Y., Refael, G., von Oppen, F., Fisher, M.P.A.: Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011)CrossRef
12.
go back to reference Liu, X.-J., Wong, C.L.M., Law, K.T.: Non-abelian majorana doublets in time–reversal–invariant topological superconductors. Phys. Rev. X 4, 021018 (2014) Liu, X.-J., Wong, C.L.M., Law, K.T.: Non-abelian majorana doublets in time–reversal–invariant topological superconductors. Phys. Rev. X 4, 021018 (2014)
13.
go back to reference Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)ADSCrossRef Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)ADSCrossRef
14.
go back to reference Devitt, S., Nemoto, K.: Programming a topological quantum computer. In: Test Symposium (ATS), 2012 IEEE 21st Asian, pp. 55–60. IEEE (2012) Devitt, S., Nemoto, K.: Programming a topological quantum computer. In: Test Symposium (ATS), 2012 IEEE 21st Asian, pp. 55–60. IEEE (2012)
16.
go back to reference Yao, N.Y., Gong, Z.-X., Laumann, C.R., Bennett, S.D., Duan, L.-M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013)ADSCrossRef Yao, N.Y., Gong, Z.-X., Laumann, C.R., Bennett, S.D., Duan, L.-M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013)ADSCrossRef
17.
go back to reference Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2(3), 031007 (2012) Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2(3), 031007 (2012)
18.
go back to reference Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quantum circuits using additional circuit lines. In: Proceedings of the 5th International Conference on Reversible Computation, RC’13, pp. 221–233. Springer, Berlin (2013) Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quantum circuits using additional circuit lines. In: Proceedings of the 5th International Conference on Reversible Computation, RC’13, pp. 221–233. Springer, Berlin (2013)
19.
go back to reference Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: Progress in VLSI Design and Test, pp. 383–392. Springer, Berlin (2012) Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: Progress in VLSI Design and Test, pp. 383–392. Springer, Berlin (2012)
20.
go back to reference Kerntopf, P., Perkowski, M., Podlaski, K.: Synthesis of reversible circuits: a view on the state-of-the-art. In: 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–6 (2012) Kerntopf, P., Perkowski, M., Podlaski, K.: Synthesis of reversible circuits: a view on the state-of-the-art. In: 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–6 (2012)
21.
go back to reference Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits–a survey. ACM Comput. Surv. 45(2), 21 (2013) Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits–a survey. ACM Comput. Surv. 45(2), 21 (2013)
22.
go back to reference Yamashita, S.: An optimization problem for topological quantum computation. In: IEEE 21st Asian Test Symposium (ATS), pp. 61–66. IEEE (2012) Yamashita, S.: An optimization problem for topological quantum computation. In: IEEE 21st Asian Test Symposium (ATS), pp. 61–66. IEEE (2012)
23.
go back to reference Bonesteel, N.E., Hormozi, L., Zikos, G., Simon, S.H.: Braid topologies for quantum computation. Phys. Rev. Lett. 95(14), 140503 (2005)ADSCrossRefMathSciNet Bonesteel, N.E., Hormozi, L., Zikos, G., Simon, S.H.: Braid topologies for quantum computation. Phys. Rev. Lett. 95(14), 140503 (2005)ADSCrossRefMathSciNet
24.
go back to reference Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 27(3), 436–444 (2008)CrossRef Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 27(3), 436–444 (2008)CrossRef
25.
go back to reference Arabzadeh, M., Saheb Zamani, M., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Inf. Process. 12(4), 1677–1699 (2013). ISSN 1570–0755ADSCrossRefMATHMathSciNet Arabzadeh, M., Saheb Zamani, M., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Inf. Process. 12(4), 1677–1699 (2013). ISSN 1570–0755ADSCrossRefMATHMathSciNet
26.
go back to reference Bocharov, A., Svore, K.M.: A depth-optimal canonical form for single-qubit quantum circuits. Phys. Rev. Lett. 109, 190501 (2012). arXiv:1206.3223v1 Bocharov, A., Svore, K.M.: A depth-optimal canonical form for single-qubit quantum circuits. Phys. Rev. Lett. 109, 190501 (2012). arXiv:​1206.​3223v1
27.
go back to reference Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 32(6), 818–830 (2013)CrossRef Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 32(6), 818–830 (2013)CrossRef
28.
go back to reference Wille, R., Lye, A., Drechsler, R.: Optimal swap gate insertion for nearest neighbor quantum circuits. In: ASP-DAC, pp. 489–494 (2014) Wille, R., Lye, A., Drechsler, R.: Optimal swap gate insertion for nearest neighbor quantum circuits. In: ASP-DAC, pp. 489–494 (2014)
29.
go back to reference Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: ACM Design Automation Conference (DAC-13), p. 41 (2013) Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: ACM Design Automation Conference (DAC-13), p. 41 (2013)
30.
go back to reference Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inf. Comput. 11(1), 142–166 (2011)MATHMathSciNet Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inf. Comput. 11(1), 142–166 (2011)MATHMathSciNet
31.
go back to reference Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)CrossRefMATHMathSciNet Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)CrossRefMATHMathSciNet
32.
go back to reference Matsuo, A., Yamashita, S.: Changing the gate order for optimal lnn conversion. In: Proceedings of the Third International Conference on Reversible Computation, pp. 89–101 (2012) Matsuo, A., Yamashita, S.: Changing the gate order for optimal lnn conversion. In: Proceedings of the Third International Conference on Reversible Computation, pp. 89–101 (2012)
33.
go back to reference AlFailakawi, M., AlTerkawi, L., Ahmad, I., Hamdan, S.: Line ordering of reversible circuits for linear nearest neighbor realization. Quantum Inf. Process. 12(10), 3319–3339 (2013). ISSN 1570–0755ADSCrossRefMATHMathSciNet AlFailakawi, M., AlTerkawi, L., Ahmad, I., Hamdan, S.: Line ordering of reversible circuits for linear nearest neighbor realization. Quantum Inf. Process. 12(10), 3319–3339 (2013). ISSN 1570–0755ADSCrossRefMATHMathSciNet
34.
go back to reference Hashimoto, A., Stevens, J.: Wire routing by optimizing channel assignment within large apertures. In: Proceedings of the 8th Design Automation Workshop, pp. 155–169. ACM (1971) Hashimoto, A., Stevens, J.: Wire routing by optimizing channel assignment within large apertures. In: Proceedings of the 8th Design Automation Workshop, pp. 155–169. ACM (1971)
35.
go back to reference Kurdahi, F.J., Parker, A.C.: Real: a program for register allocation. In: Proceedings of the 24th ACM/IEEE Design Automation Conference, pp. 210–215. ACM (1987) Kurdahi, F.J., Parker, A.C.: Real: a program for register allocation. In: Proceedings of the 24th ACM/IEEE Design Automation Conference, pp. 210–215. ACM (1987)
36.
go back to reference Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific, pp. 145–150. IEEE (2013) Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific, pp. 145–150. IEEE (2013)
37.
go back to reference Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATH Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATH
38.
go back to reference Adam, T.L., Mani Chandy, K., Dickson, J.R.: A comparison of list schedules for parallel processing systems. Commun. ACM 17(12), 685–690 (1974)CrossRefMATH Adam, T.L., Mani Chandy, K., Dickson, J.R.: A comparison of list schedules for parallel processing systems. Commun. ACM 17(12), 685–690 (1974)CrossRefMATH
39.
go back to reference Wille, R., Grosse, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: An online resource for reversible functions and reversible circuits. In: 38th International Symposium on Multiple Valued Logic (ISMVL), pp. 220–225 (2008) Wille, R., Grosse, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: An online resource for reversible functions and reversible circuits. In: 38th International Symposium on Multiple Valued Logic (ISMVL), pp. 220–225 (2008)
Metadata
Title
Depth optimization for topological quantum circuits
Authors
Mohammad AlFailakawi
Imtiaz Ahmad
Laila AlTerkawi
Suha Hamdan
Publication date
01-02-2015
Publisher
Springer US
Published in
Quantum Information Processing / Issue 2/2015
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-014-0867-y

Other articles of this Issue 2/2015

Quantum Information Processing 2/2015 Go to the issue