Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 5/2024

10-04-2023 | Technical Article

Description of Grain Evolution Behaviors in Mesoscale during Electrical-Thermal-Mechanical Coupling Compression Processes for Ni80A Superalloy

Authors: Ying Tong, Yu-qing Zhang, Jiang Zhao, Guo-zheng Quan, Wei Xiong

Published in: Journal of Materials Engineering and Performance | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Engine components, particularly exhaust valves, are manufactured by a specific forming process known as electric upsetting, which contributes to microstructures with finer grains which enhance the performance of these components. To this end, it is necessarily required to describe the grain evolution behaviors of heat-resistant alloys during the electrical-thermal-mechanical coupling forming process. The grain evolution behaviors of Ni80A superalloy including dynamic recrystallization (DRX) kinetics models and mesoscale cellular automaton (CA) model are solved from the acquired stress–strain curves in resistance heating isothermal compression tests. Following which, a multi-field and multi-scale coupling FEM model is established by embedding the multi-scale grain evolution models into the electrical-thermal-mechanical multi-field coupling compression model. Then the grain evolution behaviors in isothermal compressions with processing conditions are reproduced by simulations. The results reveal that during the isothermal compressions, recrystallized grains intend to bulge and generate around the original grain boundaries, representing as ‘necklace’ microstructures inhomogeneously distributed in the matrix, and then such grain morphology is gradually replaced by refined and equiaxed DRX grains. For a fixed strain, grain size decreases with decreasing temperature and increasing strain rate. Finally, the EBSD characterization results show that the developed FEM model can well describe the grain evolution behaviors of Ni80A superalloy in electrical-thermal-mechanical coupling compression process.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.Z. Quan, Q. Liu, J. Zhao, W. Xiong, and R.J. Shi, Determination of Dynamic Recrystallization Parameter Domains of Ni80A Superalloy by Enhanced Processing Maps, Trans. Nonferrous Met. Soc. China, 2019, 29, p 1449–1464. CrossRef G.Z. Quan, Q. Liu, J. Zhao, W. Xiong, and R.J. Shi, Determination of Dynamic Recrystallization Parameter Domains of Ni80A Superalloy by Enhanced Processing Maps, Trans. Nonferrous Met. Soc. China, 2019, 29, p 1449–1464. CrossRef
2.
go back to reference G.Z. Quan, Y.Q. Zhang, P. Zhang, Y.Y. Ma, and W.Y. Wang, Correspondence Between Low-Energy Twin Boundary Density and Thermal-Plastic Deformation Parameters in Nickel-Based Superalloy, Trans. Nonferrous Met. Soc. China, 2021, 31(2), p 438–455. CrossRef G.Z. Quan, Y.Q. Zhang, P. Zhang, Y.Y. Ma, and W.Y. Wang, Correspondence Between Low-Energy Twin Boundary Density and Thermal-Plastic Deformation Parameters in Nickel-Based Superalloy, Trans. Nonferrous Met. Soc. China, 2021, 31(2), p 438–455. CrossRef
3.
go back to reference Y.Z. Zhu, Z.M. Yin, and J.P. Xu, Microstructural Mapping in Closed Die Forging Process of Superalloy Nimonic 80 A Valve Head, J. Alloys Compd., 2011, 509, p 6106–6112. CrossRef Y.Z. Zhu, Z.M. Yin, and J.P. Xu, Microstructural Mapping in Closed Die Forging Process of Superalloy Nimonic 80 A Valve Head, J. Alloys Compd., 2011, 509, p 6106–6112. CrossRef
4.
go back to reference G.Z. Quan, J. Pan, X. Wang, Z.H. Zhang, L. Zhang, and T. Wang, Correspondence Between Grain Refinements and Flow Softening Behaviors at Nimonic 80 A Superalloy Under Different Strain Rates, Temperatures and Strains, Mater. Sci. Eng. A, 2017, 679, p 358–371. CrossRef G.Z. Quan, J. Pan, X. Wang, Z.H. Zhang, L. Zhang, and T. Wang, Correspondence Between Grain Refinements and Flow Softening Behaviors at Nimonic 80 A Superalloy Under Different Strain Rates, Temperatures and Strains, Mater. Sci. Eng. A, 2017, 679, p 358–371. CrossRef
5.
go back to reference G.Z. Quan, L. Zhang, C. An, and Z.Y. Zou, Multi-Variable and Bi-Objective Optimization of Electric Upsetting Process for Grain Refinement and its Uniform Distribution, Int. J. Precis. Eng. Man., 2018, 19(6), p 859–872. CrossRef G.Z. Quan, L. Zhang, C. An, and Z.Y. Zou, Multi-Variable and Bi-Objective Optimization of Electric Upsetting Process for Grain Refinement and its Uniform Distribution, Int. J. Precis. Eng. Man., 2018, 19(6), p 859–872. CrossRef
6.
go back to reference G.Z. Quan, Y.L. Li, L. Zhang, and X. Wang, Evolution of Grain Refinement Degree Induced by Dynamic Recrystallization for Nimonic 80A During Hot Compression Process and its FEM Analysis, Vacuum, 2017, 139, p 51–63. CrossRefADS G.Z. Quan, Y.L. Li, L. Zhang, and X. Wang, Evolution of Grain Refinement Degree Induced by Dynamic Recrystallization for Nimonic 80A During Hot Compression Process and its FEM Analysis, Vacuum, 2017, 139, p 51–63. CrossRefADS
7.
go back to reference G.Z. Quan, P. Zhang, Y.Y. Ma, Y.Q. Zhang, C.L. Lu, and W.Y. Wang, Characterization of Grain Growth Behaviors by BP-ANN and Sellars Models for Nickle-Base Superalloy and their Comparisons, Trans. Nonferrous Met. Soc. China, 2020, 30(9), p 2435–2448. CrossRef G.Z. Quan, P. Zhang, Y.Y. Ma, Y.Q. Zhang, C.L. Lu, and W.Y. Wang, Characterization of Grain Growth Behaviors by BP-ANN and Sellars Models for Nickle-Base Superalloy and their Comparisons, Trans. Nonferrous Met. Soc. China, 2020, 30(9), p 2435–2448. CrossRef
8.
go back to reference H.S. Jeong, J.R. Cho, and H.C. Park, Microstructure Prediction of Nimonic 80A for Large Exhaust Valve During Hot Closed Die Forging, J. Mater. Process. Technol., 2005, 162, p 504–511. CrossRef H.S. Jeong, J.R. Cho, and H.C. Park, Microstructure Prediction of Nimonic 80A for Large Exhaust Valve During Hot Closed Die Forging, J. Mater. Process. Technol., 2005, 162, p 504–511. CrossRef
9.
go back to reference S. Wolfram. Theory and Applications of Cellular Automata. World Scientific Pub Co Inc, Singapore (1986) S. Wolfram. Theory and Applications of Cellular Automata. World Scientific Pub Co Inc, Singapore (1986)
10.
go back to reference G.Z. Quan, K.K. Zhang, C. An, H.M. Qiu, and Y.F. Xia, Analysis of Dynamic Recrystallization Behaviors in Resistance Heating Compressions of Heat-Resistant Alloy by Multi-Field and Multi-Scale Coupling Method, Comput. Mater. Sci., 2018, 149, p 73–83. CrossRef G.Z. Quan, K.K. Zhang, C. An, H.M. Qiu, and Y.F. Xia, Analysis of Dynamic Recrystallization Behaviors in Resistance Heating Compressions of Heat-Resistant Alloy by Multi-Field and Multi-Scale Coupling Method, Comput. Mater. Sci., 2018, 149, p 73–83. CrossRef
11.
go back to reference R.L. Goetz and V. Seetharaman, Modeling Dynamic Recrystallization Using Cellular Automata, Scr. Mater., 1998, 38(3), p 405–413. CrossRef R.L. Goetz and V. Seetharaman, Modeling Dynamic Recrystallization Using Cellular Automata, Scr. Mater., 1998, 38(3), p 405–413. CrossRef
12.
go back to reference L. Zhang, C. Zhang, Y. Wang, S. Wang, and H. Ye, A Cellular Automaton Investigation of the Transformation from Austenite to Ferrite During Continuous Cooling, Acta Mater., 2003, 51, p 5519–5527. CrossRefADS L. Zhang, C. Zhang, Y. Wang, S. Wang, and H. Ye, A Cellular Automaton Investigation of the Transformation from Austenite to Ferrite During Continuous Cooling, Acta Mater., 2003, 51, p 5519–5527. CrossRefADS
13.
go back to reference S. Kundu, M. Dutta, S. Ganguly, and S. Chandra, Prediction of Phase Transformation and Microstructure in Steel Using Cellular Automaton Technique, Scr. Mater., 2004, 50(6), p 891–895. CrossRef S. Kundu, M. Dutta, S. Ganguly, and S. Chandra, Prediction of Phase Transformation and Microstructure in Steel Using Cellular Automaton Technique, Scr. Mater., 2004, 50(6), p 891–895. CrossRef
14.
go back to reference D.S. Svyetlichnyy, Modeling of Grain Refinement by Cellular Automata, Comput. Mater. Sci., 2013, 77, p 408–416. CrossRef D.S. Svyetlichnyy, Modeling of Grain Refinement by Cellular Automata, Comput. Mater. Sci., 2013, 77, p 408–416. CrossRef
15.
go back to reference J. Majta, L. Madej, D.S. Svyetlichnyy, K. Perzynski, M. Kwiecien, and K. Muszka, Modeling of the Inhomogeneity of Grain Refinement During Combined Metal Forming Process By Finite Element and Cellular Automata Methods, Mater. Sci. Eng. A, 2016, 671, p 204–213. CrossRef J. Majta, L. Madej, D.S. Svyetlichnyy, K. Perzynski, M. Kwiecien, and K. Muszka, Modeling of the Inhomogeneity of Grain Refinement During Combined Metal Forming Process By Finite Element and Cellular Automata Methods, Mater. Sci. Eng. A, 2016, 671, p 204–213. CrossRef
16.
go back to reference L.A. Reyes, P. Paramo, A.S. Zamarripa, I. De, and M.G. Mata, Grain Size Modeling of a Ni-Base Superalloy Using Cellular Automata Algorithm, Mater. Des., 2015, 83, p 301–307. CrossRef L.A. Reyes, P. Paramo, A.S. Zamarripa, I. De, and M.G. Mata, Grain Size Modeling of a Ni-Base Superalloy Using Cellular Automata Algorithm, Mater. Des., 2015, 83, p 301–307. CrossRef
17.
go back to reference Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, and M.S. Chen, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng. A, 2015, 626, p 432–440. CrossRef Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, and M.S. Chen, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng. A, 2015, 626, p 432–440. CrossRef
18.
go back to reference M.S. Chen, W.Q. Yuan, Y.C. Lin, H.B. Li, and Z.H. Zou, Modeling and Simulation of Dynamic Recrystallization Behavior for 42CrMo Steel by an Extended Cellular Automaton Method, Vacuum, 2017, 146, p 142–151. CrossRefADS M.S. Chen, W.Q. Yuan, Y.C. Lin, H.B. Li, and Z.H. Zou, Modeling and Simulation of Dynamic Recrystallization Behavior for 42CrMo Steel by an Extended Cellular Automaton Method, Vacuum, 2017, 146, p 142–151. CrossRefADS
19.
go back to reference F.X. Zhang, D. Liu, Y.H. Yang, C.X. Liu, J.G. Wang, Z. Zhang, and H.P. Wang, Investigation on the Influences of δ Phase on the Dynamic Recrystallization of Inconel 718 Through a Modified Cellular Automaton Model, J. Alloys Compd., 2020, 830, p 154590. CrossRef F.X. Zhang, D. Liu, Y.H. Yang, C.X. Liu, J.G. Wang, Z. Zhang, and H.P. Wang, Investigation on the Influences of δ Phase on the Dynamic Recrystallization of Inconel 718 Through a Modified Cellular Automaton Model, J. Alloys Compd., 2020, 830, p 154590. CrossRef
20.
go back to reference C.J. Shi, J. Lai, and X. Chen, Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy During Hot Compressive Deformation, Materials, 2014, 7, p 244–264. CrossRefPubMedPubMedCentralADS C.J. Shi, J. Lai, and X. Chen, Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy During Hot Compressive Deformation, Materials, 2014, 7, p 244–264. CrossRefPubMedPubMedCentralADS
21.
go back to reference M.S. Chen, Z.H. Zou, Y.C. Lin, and K.K. Li, Hot Deformation Behaviors of a Solution-Treated Ni-Based Superalloy Under Constant and Changed Strain Rates, Vacuum, 2018, 155, p 531–538. CrossRefADS M.S. Chen, Z.H. Zou, Y.C. Lin, and K.K. Li, Hot Deformation Behaviors of a Solution-Treated Ni-Based Superalloy Under Constant and Changed Strain Rates, Vacuum, 2018, 155, p 531–538. CrossRefADS
22.
go back to reference A. Laasraoui and J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558. CrossRef A. Laasraoui and J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558. CrossRef
23.
go back to reference H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Mater., 1981, 29, p 1865–1875. CrossRef H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Mater., 1981, 29, p 1865–1875. CrossRef
24.
go back to reference S. Gourdet and F. Montheullet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51, p 2685–2699. CrossRefADS S. Gourdet and F. Montheullet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51, p 2685–2699. CrossRefADS
25.
go back to reference X.W. Chen, J.Y. Zhang, Y.Q. Du, G.X. Wang, and T. Huang, Dynamic Recrystallization Simulation for X12 Alloy Steel by CA Method Based on Modified L-J Dislocation Density Model, Metals, 2019, 9(12), p 1291. CrossRef X.W. Chen, J.Y. Zhang, Y.Q. Du, G.X. Wang, and T. Huang, Dynamic Recrystallization Simulation for X12 Alloy Steel by CA Method Based on Modified L-J Dislocation Density Model, Metals, 2019, 9(12), p 1291. CrossRef
26.
go back to reference J. John, Q. Xavier, J. Lan, and M. Étienne, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756. CrossRefADS J. John, Q. Xavier, J. Lan, and M. Étienne, The Avrami Kinetics of Dynamic Recrystallization, Acta Mater., 2009, 57(9), p 2748–2756. CrossRefADS
27.
go back to reference R.Q. Lu, S.W. Zheng, J. Teng, J.M. Hu, D.F. Fu, J.C. Chen, G.D. Zhao, F.L. Jiang, and H. Zhang, Microstructure, Mechanical Properties and Deformation Characteristics of Al-Mg-Si Alloys Processed by a Continuous Expansion Extrusion Approach, J. Mater. Sci. Technol., 2021, 80, p 150–162. CrossRef R.Q. Lu, S.W. Zheng, J. Teng, J.M. Hu, D.F. Fu, J.C. Chen, G.D. Zhao, F.L. Jiang, and H. Zhang, Microstructure, Mechanical Properties and Deformation Characteristics of Al-Mg-Si Alloys Processed by a Continuous Expansion Extrusion Approach, J. Mater. Sci. Technol., 2021, 80, p 150–162. CrossRef
28.
go back to reference Y.V.R.K. Prasad, Processing Maps: a Status Report, J. Mater. Eng. Perform., 2003, 12, p 638–645. CrossRef Y.V.R.K. Prasad, Processing Maps: a Status Report, J. Mater. Eng. Perform., 2003, 12, p 638–645. CrossRef
29.
go back to reference Y.X. Liu, Y.C. Lin, and Y. Zhou, 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng. A, 2017, 691, p 88–99. CrossRef Y.X. Liu, Y.C. Lin, and Y. Zhou, 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng. A, 2017, 691, p 88–99. CrossRef
30.
go back to reference H. Hallberg, M. Wallin, and M. Ristinmaa, Simulation of Discontinuous Dynamic Recrystallization in Pure Cu Using a Probabilistic Cellular Automaton, Comput. Mater. Sci., 2010, 49(1), p 25–34. CrossRef H. Hallberg, M. Wallin, and M. Ristinmaa, Simulation of Discontinuous Dynamic Recrystallization in Pure Cu Using a Probabilistic Cellular Automaton, Comput. Mater. Sci., 2010, 49(1), p 25–34. CrossRef
31.
go back to reference G.Z. Quan, J. Pan, and Z.H. Zhang, Phase Transformation and Recrystallization Kinetics in Space-Time Domain During Isothermal Compressions for Ti-6Al-4V Analyzed by Multi-Field and Multi-Scale Coupling FEM, Mater. Des., 2016, 94, p 523–535. CrossRef G.Z. Quan, J. Pan, and Z.H. Zhang, Phase Transformation and Recrystallization Kinetics in Space-Time Domain During Isothermal Compressions for Ti-6Al-4V Analyzed by Multi-Field and Multi-Scale Coupling FEM, Mater. Des., 2016, 94, p 523–535. CrossRef
Metadata
Title
Description of Grain Evolution Behaviors in Mesoscale during Electrical-Thermal-Mechanical Coupling Compression Processes for Ni80A Superalloy
Authors
Ying Tong
Yu-qing Zhang
Jiang Zhao
Guo-zheng Quan
Wei Xiong
Publication date
10-04-2023
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 5/2024
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08126-7

Other articles of this Issue 5/2024

Journal of Materials Engineering and Performance 5/2024 Go to the issue

Premium Partners