Skip to main content
Top
Published in: Strength of Materials 2/2018

20-05-2018

Description of the Kinetics of Short Surface Fatigue Crack Growth Using the Parameters of Fatigue Curves

Author: G. V. Tsybanev

Published in: Strength of Materials | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To describe the kinetics of short surface crack nucleation and growth in metals and alloys, an approach has been developed, which is based on deformation curves in the low-cycle fatigue region. In view of the known Ramberg–Osgood stress–strain relationship, the deformation fatigue curves have been replaced by traditional fatigue curves. Analysis of known experimental data shows that the kinetics of short surface fatigue crack initiation and growth can be described by the parameters of fatigue curves for both the low- and high-cycle fatigue region, which makes such results more informative.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. McDowell, K. Gall, M. Horstemeyer, and J. Fan, “Microstructure-based fatigue modeling of cast A356-T6 alloy,” Eng. Fract. Mech., 70, 49–80 (2003).CrossRef D. McDowell, K. Gall, M. Horstemeyer, and J. Fan, “Microstructure-based fatigue modeling of cast A356-T6 alloy,” Eng. Fract. Mech., 70, 49–80 (2003).CrossRef
2.
go back to reference N. A. Giang, U. A. Özden, A. Bezold, and C. Broeckmann, “A modified multistage fatigue model to study the fatigue life of forged HS6-5-3 tool steel under high cycle fatigue,” Proc. Appl. Math. Mech., 13, 85–86 (2013).CrossRef N. A. Giang, U. A. Özden, A. Bezold, and C. Broeckmann, “A modified multistage fatigue model to study the fatigue life of forged HS6-5-3 tool steel under high cycle fatigue,” Proc. Appl. Math. Mech., 13, 85–86 (2013).CrossRef
3.
go back to reference Y. Xue, D. L. McDowell, M. F. Horstemeyer, et al., “Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651,” Eng. Fract. Mech., 74, 2810–2823 (2007).CrossRef Y. Xue, D. L. McDowell, M. F. Horstemeyer, et al., “Microstructure-based multistage fatigue modeling of aluminum alloy 7075-T651,” Eng. Fract. Mech., 74, 2810–2823 (2007).CrossRef
4.
go back to reference K. J. Miller, “The behaviour of short fatigue cracks and their initiation. Part II – A general summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).CrossRef K. J. Miller, “The behaviour of short fatigue cracks and their initiation. Part II – A general summary,” Fatigue Fract. Eng. Mater. Struct., 10, 93–113 (1987).CrossRef
5.
go back to reference V. T. Troshchenko and L. A. Khamaza, Scattered Fatigue Damage Mechanics of Metals and Alloys [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2016). V. T. Troshchenko and L. A. Khamaza, Scattered Fatigue Damage Mechanics of Metals and Alloys [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2016).
6.
go back to reference Y. Nakai, “Evaluation of fatigue damage and fatigue crack initiation process by means of atomic-force microscopy,” Mater. Sci. Res. Int., 7, No. 2, 73–81 (2001). Y. Nakai, “Evaluation of fatigue damage and fatigue crack initiation process by means of atomic-force microscopy,” Mater. Sci. Res. Int., 7, No. 2, 73–81 (2001).
7.
go back to reference X. S. Wang, C. K. Yan, Y. Li, et al., “SEM in-situ investigation on failure of nanometallic film/subsrate structures under three-point bending loading,” Int. J. Fracture, 151, No. 2, 269–279 (2008).CrossRef X. S. Wang, C. K. Yan, Y. Li, et al., “SEM in-situ investigation on failure of nanometallic film/subsrate structures under three-point bending loading,” Int. J. Fracture, 151, No. 2, 269–279 (2008).CrossRef
8.
go back to reference T. J. Marrow, J.-Y. Buffiere, P. J. Withers, et al., “High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron,” Int. J. Fatigue, 26, 717–725 (2004).CrossRef T. J. Marrow, J.-Y. Buffiere, P. J. Withers, et al., “High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron,” Int. J. Fatigue, 26, 717–725 (2004).CrossRef
9.
go back to reference ASTM E 647-13. Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards, West Conshohocken, PA (2013). ASTM E 647-13. Standard Test Method for Measurement of Fatigue Crack Growth Rates, Annual Book of ASTM Standards, West Conshohocken, PA (2013).
10.
go back to reference J. Polák J. and P. Zezulka, “Short crack growth and fatigue life in austenitic-ferritic duplex stainless steel,” Fatigue Fract. Eng. Mater. Struct., 28, 923–935 (2005). J. Polák J. and P. Zezulka, “Short crack growth and fatigue life in austenitic-ferritic duplex stainless steel,” Fatigue Fract. Eng. Mater. Struct., 28, 923–935 (2005).
11.
go back to reference D. Jiða, P. Liðkutin, T. Kruml, and J. Polák, “Small fatigue crack growth in aluminium alloy EN-AW 6082/T6,” Int. J. Fatigue, 32, 1913–1920 (2010).CrossRef D. Jiða, P. Liðkutin, T. Kruml, and J. Polák, “Small fatigue crack growth in aluminium alloy EN-AW 6082/T6,” Int. J. Fatigue, 32, 1913–1920 (2010).CrossRef
12.
go back to reference J. Polák, “Plastic strain-controlled short crack growth and fatigue life,” Int. J. Fatigue, 27, 1192–1201 (2005).CrossRef J. Polák, “Plastic strain-controlled short crack growth and fatigue life,” Int. J. Fatigue, 27, 1192–1201 (2005).CrossRef
13.
go back to reference J. Polák, M. Petrenec, J. Man, and K. Obrtlík, “Initiation and short crack growth in austenitic-ferritic duplex steel-effect of positive mean stress,” Fatigue Fract. Eng. Mater. Struct., 35, 257–268 (2011).CrossRef J. Polák, M. Petrenec, J. Man, and K. Obrtlík, “Initiation and short crack growth in austenitic-ferritic duplex steel-effect of positive mean stress,” Fatigue Fract. Eng. Mater. Struct., 35, 257–268 (2011).CrossRef
14.
go back to reference G. V. Tsybanev, “Application of the deformation criterion to the description of short fatigue crack growth,” Strength Mater., 45, No. 1, 28–34 (2013).CrossRef G. V. Tsybanev, “Application of the deformation criterion to the description of short fatigue crack growth,” Strength Mater., 45, No. 1, 28–34 (2013).CrossRef
15.
go back to reference W. Ramberg and W. R. Osgood, Description of Stress–Strain Curves by Three Parameters, Technical Note NACA-TN-902, NACA, Washington, DC (1943). W. Ramberg and W. R. Osgood, Description of Stress–Strain Curves by Three Parameters, Technical Note NACA-TN-902, NACA, Washington, DC (1943).
16.
go back to reference V. T. Dragan, Effect of the Type of Stress State and Stress Concentration on the Fatigue Fracture Resistance Characteristics of Steels [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Kiev (1982). V. T. Dragan, Effect of the Type of Stress State and Stress Concentration on the Fatigue Fracture Resistance Characteristics of Steels [in Russian], Author’s Abstract of the Candidate Degree Thesis (Tech. Sci.), Kiev (1982).
17.
go back to reference L. Zaks, Statistical Estimation [in Russian], Statistika, Moscow (1976). L. Zaks, Statistical Estimation [in Russian], Statistika, Moscow (1976).
18.
go back to reference V. M. Skripnik and A. E. Nazin, Reliability Assessment of Technical Systems by Censored Samples [in Russian], Nauka i Tekhnika, Minsk (1981). V. M. Skripnik and A. E. Nazin, Reliability Assessment of Technical Systems by Censored Samples [in Russian], Nauka i Tekhnika, Minsk (1981).
19.
go back to reference F. E. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics, 11, No. 1, 1–21 (1969).CrossRef F. E. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics, 11, No. 1, 1–21 (1969).CrossRef
20.
go back to reference B. Yu. Lemeshko and S. B. Lemeshko, “Widening of the range of application of Grubbs-type criteria used in the rejection of anomalous measurements,” Izmerit. Tekhn., No. 6, 13–19 (2005). B. Yu. Lemeshko and S. B. Lemeshko, “Widening of the range of application of Grubbs-type criteria used in the rejection of anomalous measurements,” Izmerit. Tekhn., No. 6, 13–19 (2005).
Metadata
Title
Description of the Kinetics of Short Surface Fatigue Crack Growth Using the Parameters of Fatigue Curves
Author
G. V. Tsybanev
Publication date
20-05-2018
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2018
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-018-9973-x

Other articles of this Issue 2/2018

Strength of Materials 2/2018 Go to the issue

Premium Partners