Skip to main content
Top
Published in: Microsystem Technologies 12/2023

18-10-2023 | Technical Paper

Design and analysis of bio-mimicking tactile sensor for upper limb prosthesis

Authors: Syed Khawar Hussain Shah, Mohsin Islam Tiwana, Moazzam Islam Tiwana, Ghulam Abbas Gohar, Muhammad Tuoqeer Anwar, Tahir Rasheed

Published in: Microsystem Technologies | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tactile sensing is crucial sensory feedback that helps humans and robots to perceive their surroundings in a better way. The performance of a prosthetic hand is severely restricted by the scant tactile information provided by their sensors in contrast to the extensive tactile feedback of the human hand which has mechanoreceptors and capable of detecting both static and dynamic stimulus. Previous studies were mostly limited to detecting static stimulus and low frequency dynamic stimulus. However, some are capable of measuring both static and dynamic stimulus, but they are costly and unable to measure stimulus in frequency range of mechanoreceptors. A novel bio-mimicking tactile sensor with the ability to detect both static and dynamic forces in the frequency range of mechanoreceptors is presented in this paper. Proposed sensor design is inspired by human touch sensing receptors and targeted for use in upper limb prosthetics. A piezoelectric material is used for measuring dynamic stimulus in the sensor, whereas for evaluating static stimulus, principle of differential capacitance is utilized. A mathematical model is developed, and finite element analysis is performed using COMSOL, so that natural frequency of the sensor lies in the range of Ruffini endings (slow adapting receptor) and Pacinian corpuscles (fast adapting receptor). Results show that the first frequency of the beam is 324 Hz, which lies in the sensing range of Ruffini endings and Pacinian corpuscles. Sensor shows more than 99% agreement when results are validated by comparing eigenfrequency analysis and analytical model. The present research offers design of a bio-mimicking tactile sensor for a prosthetic hand, which is expected to incorporate prosthetic hand with touch sensing capabilities closer to that of a human hand.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmad Ridzuan NA, Miki N (2019) Tooth-inspired tactile sensor for detection of multidirectional force. Micromachines. 10(1):18CrossRef Ahmad Ridzuan NA, Miki N (2019) Tooth-inspired tactile sensor for detection of multidirectional force. Micromachines. 10(1):18CrossRef
go back to reference Beatty MF (2006) The Foundation Principles of Classical Mechanics. Principles of Engineering Mechanics. Springer, pp 3–94CrossRef Beatty MF (2006) The Foundation Principles of Classical Mechanics. Principles of Engineering Mechanics. Springer, pp 3–94CrossRef
go back to reference Büscher GH et al (2015) Flexible and stretchable fabric-based tactile sensor. Robot Auton Syst 63:244–252CrossRef Büscher GH et al (2015) Flexible and stretchable fabric-based tactile sensor. Robot Auton Syst 63:244–252CrossRef
go back to reference Chorley, C., et al. Development of a tactile sensor based on biologically inspired edge encoding. in Advanced Robotics, 2009. ICAR 2009. International Conference on. 2009. IEEE. Chorley, C., et al. Development of a tactile sensor based on biologically inspired edge encoding. in Advanced Robotics, 2009. ICAR 2009. International Conference on. 2009. IEEE.
go back to reference Chu Z, Sarro P, Middelhoek S (1996) Silicon three-axial tactile sensor. Sens Actuators, A 54(1–3):505–510CrossRef Chu Z, Sarro P, Middelhoek S (1996) Silicon three-axial tactile sensor. Sens Actuators, A 54(1–3):505–510CrossRef
go back to reference Cutkosky MR, Ulmen J (2014) Dynamic tactile sensing. The Human Hand as an Inspiration for Robot Hand Development. Springer, pp 389–403CrossRef Cutkosky MR, Ulmen J (2014) Dynamic tactile sensing. The Human Hand as an Inspiration for Robot Hand Development. Springer, pp 389–403CrossRef
go back to reference Dahiya RS et al (2010) Tactile sensing—from humans to humanoids. IEEE Trans Rob 26(1):1–20CrossRef Dahiya RS et al (2010) Tactile sensing—from humans to humanoids. IEEE Trans Rob 26(1):1–20CrossRef
go back to reference Dargahi J, Najarian S (2004) Theoretical and experimental analysis of a piezoelectric tactile sensor for use in endoscopic surgery. Sens Rev 24(1):74–83CrossRef Dargahi J, Najarian S (2004) Theoretical and experimental analysis of a piezoelectric tactile sensor for use in endoscopic surgery. Sens Rev 24(1):74–83CrossRef
go back to reference Dargahi J et al (2006) Design and microfabrication of a hybrid piezoelectric-capacitive tactile sensor. Sens Rev 26(3):186–192CrossRef Dargahi J et al (2006) Design and microfabrication of a hybrid piezoelectric-capacitive tactile sensor. Sens Rev 26(3):186–192CrossRef
go back to reference Dario P et al (2003) Biologically-inspired microfabricated force and position mechano-sensors. Sensors and sensing in biology and engineering. Springer, pp 109–125CrossRef Dario P et al (2003) Biologically-inspired microfabricated force and position mechano-sensors. Sensors and sensing in biology and engineering. Springer, pp 109–125CrossRef
go back to reference Du P, Lin X, Zhang X (2010) A multilayer bending model for conducting polymer actuators. Sens Actuators, A 163(1):240–246CrossRef Du P, Lin X, Zhang X (2010) A multilayer bending model for conducting polymer actuators. Sens Actuators, A 163(1):240–246CrossRef
go back to reference Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95(1):131–143CrossRef Flanagan JR, Wing AM (1993) Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 95(1):131–143CrossRef
go back to reference Girão PS et al (2013) Tactile sensors for robotic applications. Measurement 46(3):1257–1271CrossRef Girão PS et al (2013) Tactile sensors for robotic applications. Measurement 46(3):1257–1271CrossRef
go back to reference Howe RD, Cutkosky MR (1993) Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans Robot Autom 9(2):140–151CrossRef Howe RD, Cutkosky MR (1993) Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans Robot Autom 9(2):140–151CrossRef
go back to reference Johansson RS, Vallbo A (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286(1):283–300CrossRef Johansson RS, Vallbo A (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286(1):283–300CrossRef
go back to reference Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461CrossRef Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461CrossRef
go back to reference Joo Y-B et al (2019) Development of an electrostatic beat module for various tactile sensations in touch screen devices. Appl Sci 9(6):1229CrossRef Joo Y-B et al (2019) Development of an electrostatic beat module for various tactile sensations in touch screen devices. Appl Sci 9(6):1229CrossRef
go back to reference Kappassov Z, Corrales J-A, Perdereau V (2015) Tactile sensing in dexterous robot hands. Robot Auton Syst 74:195–220CrossRef Kappassov Z, Corrales J-A, Perdereau V (2015) Tactile sensing in dexterous robot hands. Robot Auton Syst 74:195–220CrossRef
go back to reference Ko C-T, Tseng S-H, Lu MS-C (2006) A CMOS micromachined capacitive tactile sensor with high-frequency output. J Microelectromech Syst 15(6):1708–1714CrossRef Ko C-T, Tseng S-H, Lu MS-C (2006) A CMOS micromachined capacitive tactile sensor with high-frequency output. J Microelectromech Syst 15(6):1708–1714CrossRef
go back to reference Lee S-Y, Ko B, Yang W (2005) Theoretical modeling, experiments and optimization of piezoelectric multimorph. Smart Mater Struct 14(6):1343CrossRef Lee S-Y, Ko B, Yang W (2005) Theoretical modeling, experiments and optimization of piezoelectric multimorph. Smart Mater Struct 14(6):1343CrossRef
go back to reference Liu, W., et al. PVDF-based biomimetic sensor for application in crawling soft-body mini-robots. in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006. IEEE. Liu, W., et al. PVDF-based biomimetic sensor for application in crawling soft-body mini-robots. in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006. IEEE.
go back to reference Muhammad H et al (2011) Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens Actuators, A 165(2):221–229CrossRef Muhammad H et al (2011) Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens Actuators, A 165(2):221–229CrossRef
go back to reference Muthalif AG, Nordin ND (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54:417–426CrossRef Muthalif AG, Nordin ND (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Signal Process 54:417–426CrossRef
go back to reference Najarian, S., J. Dargahi, and A. Mehrizi, Artificial tactile sensing in biomedical engineering. 2009: McGraw Hill Professional. Najarian, S., J. Dargahi, and A. Mehrizi, Artificial tactile sensing in biomedical engineering. 2009: McGraw Hill Professional.
go back to reference Ong CW et al (2003) Tensile strength of zinc oxide films measured by a microbridge method. J Mater Res 18(10):2464–2472CrossRef Ong CW et al (2003) Tensile strength of zinc oxide films measured by a microbridge method. J Mater Res 18(10):2464–2472CrossRef
go back to reference Pan L et al (2014) An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 5:3002CrossRef Pan L et al (2014) An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 5:3002CrossRef
go back to reference Qasaimeh MA et al (2008) PVDF-based microfabricated tactile sensor for minimally invasive surgery. J Microelectromech Syst 18(1):195–207CrossRef Qasaimeh MA et al (2008) PVDF-based microfabricated tactile sensor for minimally invasive surgery. J Microelectromech Syst 18(1):195–207CrossRef
go back to reference Qasaimeh MA et al (2009) PVDF-based microfabricated tactile sensor for minimally invasive surgery. J Microelectromech Syst 18(1):195–207CrossRef Qasaimeh MA et al (2009) PVDF-based microfabricated tactile sensor for minimally invasive surgery. J Microelectromech Syst 18(1):195–207CrossRef
go back to reference Qin R et al (2021) A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor. Microsyst Nanoeng 7(1):100CrossRef Qin R et al (2021) A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor. Microsyst Nanoeng 7(1):100CrossRef
go back to reference Restagno F et al (2001) A new capacitive sensor for displacement measurement in a surface-force apparatus. Meas Sci Technol 12(1):16CrossRef Restagno F et al (2001) A new capacitive sensor for displacement measurement in a surface-force apparatus. Meas Sci Technol 12(1):16CrossRef
go back to reference Romano JM et al (2011) Human-inspired robotic grasp control with tactile sensing. IEEE Trans Rob 27(6):1067–1079CrossRef Romano JM et al (2011) Human-inspired robotic grasp control with tactile sensing. IEEE Trans Rob 27(6):1067–1079CrossRef
go back to reference Ryspayeva A et al (2019) A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applications. Microelectron Eng 209:35–40CrossRef Ryspayeva A et al (2019) A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applications. Microelectron Eng 209:35–40CrossRef
go back to reference Silvera-Tawil D, Rye D, Velonaki M (2015) Artificial skin and tactile sensing for socially interactive robots: a review. Robot Auton Syst 63:230–243CrossRef Silvera-Tawil D, Rye D, Velonaki M (2015) Artificial skin and tactile sensing for socially interactive robots: a review. Robot Auton Syst 63:230–243CrossRef
go back to reference Son, JS., EA. Monteverde, and RD. Howe. A tactile sensor for localizing transient events in manipulation. in Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on. 1994. IEEE. Son, JS., EA. Monteverde, and RD. Howe. A tactile sensor for localizing transient events in manipulation. in Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on. 1994. IEEE.
go back to reference Timoshenko S, Young D (1968) Elements of Strength of Materials. D. Van Nostrand, New York Timoshenko S, Young D (1968) Elements of Strength of Materials. D. Van Nostrand, New York
go back to reference Tiwana MI et al (2011) Characterization of a capacitive tactile shear sensor for application in robotic and upper limb prostheses. Sens Actuators, A 165(2):164–172CrossRef Tiwana MI et al (2011) Characterization of a capacitive tactile shear sensor for application in robotic and upper limb prostheses. Sens Actuators, A 165(2):164–172CrossRef
go back to reference Tiwana MI, Redmond SJ, Lovell NH (2012) A review of tactile sensing technologies with applications in biomedical engineering. Sens Actuators, A 179:17–31CrossRef Tiwana MI, Redmond SJ, Lovell NH (2012) A review of tactile sensing technologies with applications in biomedical engineering. Sens Actuators, A 179:17–31CrossRef
go back to reference Tiwana MI et al (2016) Bio-Inspired PVDF-based, mouse whisker mimicking, tactile sensor. Appl Sci 6(10):297CrossRef Tiwana MI et al (2016) Bio-Inspired PVDF-based, mouse whisker mimicking, tactile sensor. Appl Sci 6(10):297CrossRef
go back to reference Wei Y, Xu Q (2015) An overview of micro-force sensing techniques. Sens Actuators, A 234:359–374CrossRef Wei Y, Xu Q (2015) An overview of micro-force sensing techniques. Sens Actuators, A 234:359–374CrossRef
go back to reference Yahud, S., et al. Experimental validation of a polyvinylidene fluoride sensing element in a tactile sensor. in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. 2010. IEEE. Yahud, S., et al. Experimental validation of a polyvinylidene fluoride sensing element in a tactile sensor. in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. 2010. IEEE.
go back to reference Yousef H, Boukallel M, Althoefer K (2011) Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens Actuators, A 167(2):171–187CrossRef Yousef H, Boukallel M, Althoefer K (2011) Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens Actuators, A 167(2):171–187CrossRef
go back to reference Zou L et al (2017) Novel tactile sensor technology and smart tactile sensing systems: a review. Sensors 17(11):2653CrossRef Zou L et al (2017) Novel tactile sensor technology and smart tactile sensing systems: a review. Sensors 17(11):2653CrossRef
Metadata
Title
Design and analysis of bio-mimicking tactile sensor for upper limb prosthesis
Authors
Syed Khawar Hussain Shah
Mohsin Islam Tiwana
Moazzam Islam Tiwana
Ghulam Abbas Gohar
Muhammad Tuoqeer Anwar
Tahir Rasheed
Publication date
18-10-2023
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 12/2023
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-023-05540-8

Other articles of this Issue 12/2023

Microsystem Technologies 12/2023 Go to the issue