Skip to main content
Top
Published in: Microsystem Technologies 5/2017

03-03-2016 | Technical Paper

Design and FEM simulation study of a microflow sensor based on piezoresistive PDMS composite for microfluidic systems

Authors: Nadir Belgroune, A. Hassein-Bey, A. L. S. Hassein-Bey, A. Tahraoui, B. Y. Majlis, M. E. A. Benamar, R. Serhane

Published in: Microsystem Technologies | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An electrical response of a microflow sensor would open a wide horizon of uses and should intensify the integration of MEMS (Micro-Electro-Mechanical-System) microfluidic-based LOC (Lab-On-Chip). This paper presents an original microflow sensor which will be able to measure a low fluid flow rate. The sensor is designed and optimized using a multiphysics modelling and FEM (Finite Element Method) simulations implemented on Comsol Multiphysics software. The sensing element made of CPDMS (Conductive PolyDiMethylSiloxane) consists in microbridge suspended into PDMS microchannel. The microbridge acts as a transducer. It converts the mechanical bending due to a fluid flow to an electrical signal using the piezoresistive property of the CPDMS. The numerical simulation results show that under specific geometrical parameters, the sensor has a sensitivity of 0.12 % ml−1 min for low flow rates. Furthermore, the simulation results also show that the laminar aspect of the flow is maintained and to avoid the strangling effect, a good equilibrium must be achieved between the microchannel height and the desired range of the microbridge dimensions. This work opens a horizon for microfluidic devices to measure a low flow rate using a piezoresistive effect giving access to an electrical response.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aiyar AR, Song C, Kim S-H, Allen MG (2009) An all-polymer airflow sensor using a piezoresistive composite elastomer. Smart Mater Struct 18:1150021CrossRef Aiyar AR, Song C, Kim S-H, Allen MG (2009) An all-polymer airflow sensor using a piezoresistive composite elastomer. Smart Mater Struct 18:1150021CrossRef
go back to reference Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552CrossRef Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. Proc IEEE 97:513–552CrossRef
go back to reference Basak S, Raman A, Garimella SV (2006) Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J Appl Phys 99:1149061–1149066CrossRef Basak S, Raman A, Garimella SV (2006) Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J Appl Phys 99:1149061–1149066CrossRef
go back to reference Bashir R (2004) BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliver Rev 56:1565–1586CrossRef Bashir R (2004) BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliver Rev 56:1565–1586CrossRef
go back to reference Boiarkine O, Kuzmin D, Canic S, Guidoboni G, Mikelic A (2011) A positivity-preserving ALE finite element scheme for convection–diffusion equations in moving domains. J Comput Phys 230:2896–2914MathSciNetCrossRefMATH Boiarkine O, Kuzmin D, Canic S, Guidoboni G, Mikelic A (2011) A positivity-preserving ALE finite element scheme for convection–diffusion equations in moving domains. J Comput Phys 230:2896–2914MathSciNetCrossRefMATH
go back to reference Cao H, Gan Z, Lv Q, Yan H, Luo X, Song X, Liu S (2010) Single-walled carbon nanotube network/poly composite thin film for flow sensor. Microsyst Technol 16:955–959CrossRef Cao H, Gan Z, Lv Q, Yan H, Luo X, Song X, Liu S (2010) Single-walled carbon nanotube network/poly composite thin film for flow sensor. Microsyst Technol 16:955–959CrossRef
go back to reference Castellanos-Ramos J, Navas-Gonzàlez R, Macicior H, Sikora T, Ochoteco E, Vidal-Verdu F (2010) Tactile sensors based on conductive polymers. Microsyst Technol 16:765–776CrossRef Castellanos-Ramos J, Navas-Gonzàlez R, Macicior H, Sikora T, Ochoteco E, Vidal-Verdu F (2010) Tactile sensors based on conductive polymers. Microsyst Technol 16:765–776CrossRef
go back to reference Cheri MS, Latifi AH, Sadeghi AJ, Moghaddam AMS, Shahrakia AH, Hajghassemc H (2014) Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor. Analyst 139:431–438CrossRef Cheri MS, Latifi AH, Sadeghi AJ, Moghaddam AMS, Shahrakia AH, Hajghassemc H (2014) Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor. Analyst 139:431–438CrossRef
go back to reference Erickson D, Li D (2004) Review integrated microfluidic devices. Anal Chim Acta 507:11–26CrossRef Erickson D, Li D (2004) Review integrated microfluidic devices. Anal Chim Acta 507:11–26CrossRef
go back to reference Falsafioon M, Arabi S, Camarero R, Guibault F (2013) Comparison of two mesh smoothing techniques for unstructured grids. IOP Conf Ser Earth Environ Sci 22:0220201–0220210 Falsafioon M, Arabi S, Camarero R, Guibault F (2013) Comparison of two mesh smoothing techniques for unstructured grids. IOP Conf Ser Earth Environ Sci 22:0220201–0220210
go back to reference Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidic 4:0265021–0265025 Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidic 4:0265021–0265025
go back to reference Gong X, Wen W (2009) Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. Biomicrofluidics 3:012007CrossRef Gong X, Wen W (2009) Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. Biomicrofluidics 3:012007CrossRef
go back to reference Hughes TJR, Liu WK, Zimmerman TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows Comput. Method Appl Mech Eng 29:329–349CrossRefMATH Hughes TJR, Liu WK, Zimmerman TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows Comput. Method Appl Mech Eng 29:329–349CrossRefMATH
go back to reference Johns GK (2006) Modeling piezoresistivity in silicon and polysilicon. J Appl Eng Math 2:1–5 Johns GK (2006) Modeling piezoresistivity in silicon and polysilicon. J Appl Eng Math 2:1–5
go back to reference Kalantari M, Dargahi J, Kovecses J, Mardasi MG, Nouri S (2012) A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Trans Mech 17:572–581CrossRef Kalantari M, Dargahi J, Kovecses J, Mardasi MG, Nouri S (2012) A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Trans Mech 17:572–581CrossRef
go back to reference Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Dev. 29:64–70CrossRef Kanda Y (1982) A graphical representation of the piezoresistance coefficients in silicon. IEEE Trans Electron Dev. 29:64–70CrossRef
go back to reference Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A 28:83–91CrossRef Kanda Y (1991) Piezoresistance effect of silicon. Sens Actuators A 28:83–91CrossRef
go back to reference Khosla A, Gray BL (2010) Fabrication of multiwalled carbon nanotube polydimethylsiloxne nanocomposite polymer flexible microelectrodes for microfluidics and MEMS. In: Proceeding of SPIE on Electroactive Polymer Actuators and Devices (EAPAD), vol 7642, pp 76421–76429 Khosla A, Gray BL (2010) Fabrication of multiwalled carbon nanotube polydimethylsiloxne nanocomposite polymer flexible microelectrodes for microfluidics and MEMS. In: Proceeding of SPIE on Electroactive Polymer Actuators and Devices (EAPAD), vol 7642, pp 76421–76429
go back to reference Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens Actuators A 110:142–149CrossRef Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens Actuators A 110:142–149CrossRef
go back to reference Kumar SS, Pant BD (2014) Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst Technol 20:1213–1247CrossRef Kumar SS, Pant BD (2014) Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst Technol 20:1213–1247CrossRef
go back to reference Lai CC, Chung CK (2013) Numerical simulation of the capillary flow in the meander microchannel. Microsyst Technol 19:379–386CrossRef Lai CC, Chung CK (2013) Numerical simulation of the capillary flow in the meander microchannel. Microsyst Technol 19:379–386CrossRef
go back to reference Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16:1995–2015CrossRef Lim YC, Kouzani AZ, Duan W (2010) Lab-on-a-chip: a component view. Microsyst Technol 16:1995–2015CrossRef
go back to reference Luheng W, Tianhuai D, Peng W (2009) Influence of carbon black concentration on piezoresistivity. Carbon 47:3151–3157CrossRef Luheng W, Tianhuai D, Peng W (2009) Influence of carbon black concentration on piezoresistivity. Carbon 47:3151–3157CrossRef
go back to reference Mat Nawi MN, Abd Manaf A, Arshad MR, Sidek O (2011) Review of MEMS flow sensors based on artificial hair cell sensor. Microsyst Technol 17:1417–1426CrossRef Mat Nawi MN, Abd Manaf A, Arshad MR, Sidek O (2011) Review of MEMS flow sensors based on artificial hair cell sensor. Microsyst Technol 17:1417–1426CrossRef
go back to reference Mistry KK, Mahapatra A (2012) Design and simulation of a thermo transfer type MEMS based micro flow sensor for arterial blood flow measurement. Microsyst Technol 18:683–692CrossRef Mistry KK, Mahapatra A (2012) Design and simulation of a thermo transfer type MEMS based micro flow sensor for arterial blood flow measurement. Microsyst Technol 18:683–692CrossRef
go back to reference Nezhad AS, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2013) PDMS microcantilever-based flow sensor integration for Lab-on-a-Chip. IEEE Sens J 13:601–609CrossRef Nezhad AS, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2013) PDMS microcantilever-based flow sensor integration for Lab-on-a-Chip. IEEE Sens J 13:601–609CrossRef
go back to reference Niu X, Peng S, Liu L, Wen W, Sheng P (2007) Characterizing and patterning of PDMS-based conducting composites. Adv Mater 19:2682–2686CrossRef Niu X, Peng S, Liu L, Wen W, Sheng P (2007) Characterizing and patterning of PDMS-based conducting composites. Adv Mater 19:2682–2686CrossRef
go back to reference Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23:0557031–0557039CrossRef Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23:0557031–0557039CrossRef
go back to reference Rizvi R, Cochrane B, Biddiss E, Naguib H (2011) Piezoresistance characterization of poly(dimethyl-siloxane) and poly(ethylene) carbon nanotube composites. Smart Mater Struct 20:0940031–0940039CrossRef Rizvi R, Cochrane B, Biddiss E, Naguib H (2011) Piezoresistance characterization of poly(dimethyl-siloxane) and poly(ethylene) carbon nanotube composites. Smart Mater Struct 20:0940031–0940039CrossRef
go back to reference Sathe S, Benney R, Charles R, Doucette E, Miletti J, Senga M, Stein K, Tezduyar TE (2007) Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques. Comput Fluids 36:127–135CrossRefMATH Sathe S, Benney R, Charles R, Doucette E, Miletti J, Senga M, Stein K, Tezduyar TE (2007) Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques. Comput Fluids 36:127–135CrossRefMATH
go back to reference Shikida M, Matsuyama T, Yamada T, Matsushima M, Kawabe T (2015) Development of implantable catheter flow sensor into inside of bronchi for laboratory animal. Microsyst Technol. doi:10.1007/s00542-015-2663-8 Shikida M, Matsuyama T, Yamada T, Matsushima M, Kawabe T (2015) Development of implantable catheter flow sensor into inside of bronchi for laboratory animal. Microsyst Technol. doi:10.​1007/​s00542-015-2663-8
go back to reference Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576CrossRef Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576CrossRef
go back to reference Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRef Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRef
go back to reference Stassi S, Cauda V, Canavese G, Pirri CF (2014) Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14:5296–5332CrossRef Stassi S, Cauda V, Canavese G, Pirri CF (2014) Flexible tactile sensing based on piezoresistive composites: a review. Sensors 14:5296–5332CrossRef
go back to reference Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircr 38:800–808CrossRef Stein KR, Benney RJ, Tezduyar TE, Leonard JW, Accorsi ML (2001) Fluid–structure interactions of a round parachute: modeling and simulation techniques. J Aircr 38:800–808CrossRef
go back to reference Takamatsu S, Yamashita T, Itoh T (2015) Meter-scale large-area capacitive pressure sensors with fabric with stripe electrodes of conductive polymer-coated fibers. Microsyst Technol 22:451–457CrossRef Takamatsu S, Yamashita T, Itoh T (2015) Meter-scale large-area capacitive pressure sensors with fabric with stripe electrodes of conductive polymer-coated fibers. Microsyst Technol 22:451–457CrossRef
go back to reference Wbitesides GM (2008) The origins and the future of microfluidics. Nature 442:368–373CrossRef Wbitesides GM (2008) The origins and the future of microfluidics. Nature 442:368–373CrossRef
go back to reference Yamada K, Nishihara M, Shimada S, Tanabe M, Shimazoe M, Matsuoka Y (1982) Nonlinearity of the piezoresistance effect of p-type silicon diffused layers. IEEE Trans Electron Dev 29:64–70CrossRef Yamada K, Nishihara M, Shimada S, Tanabe M, Shimazoe M, Matsuoka Y (1982) Nonlinearity of the piezoresistance effect of p-type silicon diffused layers. IEEE Trans Electron Dev 29:64–70CrossRef
go back to reference Yu H, Li D, Roberts RC, Xu K, Tien NC (2013) A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid. Microsyst Technol 9:989–994CrossRef Yu H, Li D, Roberts RC, Xu K, Tien NC (2013) A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid. Microsyst Technol 9:989–994CrossRef
go back to reference Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRef Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16CrossRef
Metadata
Title
Design and FEM simulation study of a microflow sensor based on piezoresistive PDMS composite for microfluidic systems
Authors
Nadir Belgroune
A. Hassein-Bey
A. L. S. Hassein-Bey
A. Tahraoui
B. Y. Majlis
M. E. A. Benamar
R. Serhane
Publication date
03-03-2016
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 5/2017
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-2891-6

Other articles of this Issue 5/2017

Microsystem Technologies 5/2017 Go to the issue