Skip to main content
Top
Published in: Optical Memory and Neural Networks 2/2023

01-06-2023

Design and Simulation of a Reconfigurable Multifunctional Optical Sensor

Authors: Shaher Dwik, G. Sasikala, S. Natarajan

Published in: Optical Memory and Neural Networks | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Generally, in Visible Light Communication (VLC) systems, Position Sensitive Device (PSD) sensor is used only for tracking purposes. However, the tracking process functions until both transmitter and receiver align, thus the PSD sensor remains idle for a long time. This interval can be exploited to achieve other functions by modifying its architecture. In this paper, a modification of the PSD structure has been achieved to make it able to perform energy harvesting and data acquisition as well as tracking. As the PSD is mainly formed of an array of photodiodes, our main idea is to use transistors to switch between the two modes of operation of the photodiodes (photoconductive and photovoltaic). Furthermore, switching between the output pins could be achieved depending on the desired function. The proposed sensor can extend the battery lifetime, increase the integration and the functionality, and reduce the physical size of the system. Simulation using MATALB was performed to validate the concept of the proposed structure and its operation. The results showed that the proposed sensor works successfully and it can be considered for further manufacturing levels. The presented sensor might be used in Free Space Optical (FSO) communication like cube satellite, or even in Underwater Wireless Optical Communication (UWOC).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Ndjiongue, A.R., Ferreira, H.C., and Ngatched, T.M., Visible light communications (VLC) technology, Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, pp. 1–15. Ndjiongue, A.R., Ferreira, H.C., and Ngatched, T.M., Visible light communications (VLC) technology, Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, pp. 1–15.
3.
go back to reference Kumar, N., Lourenco, N., Spiez, M., and Aguiar, R.L., Visible light communication systems conception and vidas, IETE Tech. Rev., 2008, vol. 25, no. 6, pp. 359–367.CrossRef Kumar, N., Lourenco, N., Spiez, M., and Aguiar, R.L., Visible light communication systems conception and vidas, IETE Tech. Rev., 2008, vol. 25, no. 6, pp. 359–367.CrossRef
4.
go back to reference Cevik, T. and Yilmaz, S., An overview of visible light communication systems, Int. J. Comput. Networks Commun. (IJCNC), 2015, vol. 7, no. 6, pp. 139–150.CrossRef Cevik, T. and Yilmaz, S., An overview of visible light communication systems, Int. J. Comput. Networks Commun. (IJCNC), 2015, vol. 7, no. 6, pp. 139–150.CrossRef
5.
go back to reference Liu, Z., Guan, W., and Wen, S., Improved target signal source tracking and extraction method based on outdoor visible light communication using an improved particle filter algorithm based on Cam-Shift algorithm, IEEE Photonics J., 2019, vol. 11, no. 6, pp. 1–20. Liu, Z., Guan, W., and Wen, S., Improved target signal source tracking and extraction method based on outdoor visible light communication using an improved particle filter algorithm based on Cam-Shift algorithm, IEEE Photonics J., 2019, vol. 11, no. 6, pp. 1–20.
6.
go back to reference Do, T.H. and Yoo, M., An in-depth survey of visible light communication based positioning systems, Sensors, 2016, vol. 16, no. 5, p. 678.CrossRef Do, T.H. and Yoo, M., An in-depth survey of visible light communication based positioning systems, Sensors, 2016, vol. 16, no. 5, p. 678.CrossRef
7.
go back to reference Othman, A. and Maga, D., Indoor photovoltaic energy harvester with rechargeable battery for wireless sensor node, in 2018 18th International Conference on Mechatronics-Mechatronika (ME), IEEE, pp. 1–6. Othman, A. and Maga, D., Indoor photovoltaic energy harvester with rechargeable battery for wireless sensor node, in 2018 18th International Conference on Mechatronics-Mechatronika (ME), IEEE, pp. 1–6.
8.
go back to reference Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., and Haas, H., VLC: Beyond point-to-point communication, IEEE Commun. Mag., 2014, vol. 52, no. 7, pp. 98–105.CrossRef Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., and Haas, H., VLC: Beyond point-to-point communication, IEEE Commun. Mag., 2014, vol. 52, no. 7, pp. 98–105.CrossRef
9.
go back to reference Luo, J., Fan, L., and Li, H., Indoor positioning systems based on visible light communication: State of the art, IEEE Commun. Surv. Tutorials, 2017, vol. 19 no. 4, pp. 2871–2893.CrossRef Luo, J., Fan, L., and Li, H., Indoor positioning systems based on visible light communication: State of the art, IEEE Commun. Surv. Tutorials, 2017, vol. 19 no. 4, pp. 2871–2893.CrossRef
10.
go back to reference Albayati, S., An overview of visible light communication systems, Int. J. Comput. Sci. Mobile Comput., 2019, vol. 8, no. 6, pp. 51–56. Albayati, S., An overview of visible light communication systems, Int. J. Comput. Sci. Mobile Comput., 2019, vol. 8, no. 6, pp. 51–56.
11.
go back to reference Obeed, M., Salhab, A.M., Alouini, M.S., and Zummo, S.A., On optimizing VLC networks for downlink multi-user transmission: A survey, IEEE Commun. Surv. Tutorials, 2019, vol. 21, no. 3, pp. 2947–2976.CrossRef Obeed, M., Salhab, A.M., Alouini, M.S., and Zummo, S.A., On optimizing VLC networks for downlink multi-user transmission: A survey, IEEE Commun. Surv. Tutorials, 2019, vol. 21, no. 3, pp. 2947–2976.CrossRef
12.
go back to reference Ge, P., Liang, X., Wang, J., Zhao, C., Gao, X., and Ding, Z., Optical filter designs for multi-color visible light communication, IEEE Trans. Commun., 2018, vol. 67, no. 3, pp. 2173–2187.CrossRef Ge, P., Liang, X., Wang, J., Zhao, C., Gao, X., and Ding, Z., Optical filter designs for multi-color visible light communication, IEEE Trans. Commun., 2018, vol. 67, no. 3, pp. 2173–2187.CrossRef
13.
go back to reference Tedeschi, P., Sciancalepore, S., and Di Pietro, R., Security in energy harvesting networks: A survey of current solutions and research challenges, IEEE Commun. Surv. Tutorials, 2020, vol. 22, no. 4, pp. 2658–2693.CrossRef Tedeschi, P., Sciancalepore, S., and Di Pietro, R., Security in energy harvesting networks: A survey of current solutions and research challenges, IEEE Commun. Surv. Tutorials, 2020, vol. 22, no. 4, pp. 2658–2693.CrossRef
14.
go back to reference Blinowski, G., Security of visible light communication systems –A survey, Phys. Commun., 2019, vol. 34, pp. 246–260.CrossRef Blinowski, G., Security of visible light communication systems –A survey, Phys. Commun., 2019, vol. 34, pp. 246–260.CrossRef
15.
go back to reference Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G.P., and Hamblin, M.R., Photoantimicrobials—Are we afraid of the light?, Lancet Infect. Dis., 2017, vol. 17, no. 2, pp. e49–e55.CrossRef Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G.P., and Hamblin, M.R., Photoantimicrobials—Are we afraid of the light?, Lancet Infect. Dis., 2017, vol. 17, no. 2, pp. e49–e55.CrossRef
16.
go back to reference Căilean, A.M., and Dimian, M., Current challenges for visible light communications usage in vehicle applications: A survey, IEEE Commun. Surv. Tutorials, 2017, vol. 19, no. 4, pp. 2681–2703.CrossRef Căilean, A.M., and Dimian, M., Current challenges for visible light communications usage in vehicle applications: A survey, IEEE Commun. Surv. Tutorials, 2017, vol. 19, no. 4, pp. 2681–2703.CrossRef
17.
go back to reference Sheoran, S., Garg, P., and Sharma, P.K., Location tracking for indoor VLC systems using intelligent photodiode receiver, IET Commun., 2018, vol. 12, no. 13, pp. 1589–1594.CrossRef Sheoran, S., Garg, P., and Sharma, P.K., Location tracking for indoor VLC systems using intelligent photodiode receiver, IET Commun., 2018, vol. 12, no. 13, pp. 1589–1594.CrossRef
18.
go back to reference Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., and Zhang, T., A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications, IEEE Commun. Surv. Tutorials, 2018, vol. 20, no. 2, pp. 1104–1123.CrossRef Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., and Zhang, T., A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications, IEEE Commun. Surv. Tutorials, 2018, vol. 20, no. 2, pp. 1104–1123.CrossRef
19.
go back to reference Kong, M., Kang, C.H., Alkhazragi, O., Sun, X., Guo, Y., Sait, M., Holguin-Lerma, J.A., Ng, T.K., and Ooi, B.S., Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication, Prog. Quant. Electronics, 2020, vol. 74, p. 100300.CrossRef Kong, M., Kang, C.H., Alkhazragi, O., Sun, X., Guo, Y., Sait, M., Holguin-Lerma, J.A., Ng, T.K., and Ooi, B.S., Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication, Prog. Quant. Electronics, 2020, vol. 74, p. 100300.CrossRef
20.
go back to reference Khan, A.S. and Khan, F.U., A survey of wearable energy harvesting systems, Int. J. Energy Res., 2022, vol. 46, no. 3, pp. 2277–2329.CrossRef Khan, A.S. and Khan, F.U., A survey of wearable energy harvesting systems, Int. J. Energy Res., 2022, vol. 46, no. 3, pp. 2277–2329.CrossRef
21.
go back to reference Kiziroglou, M.E. and Yeatman, E.M., Materials and techniques for energy harvesting, Functional Materials for Sustainable Energy Applications, Woodhead Publ., 2012, pp. 541–572. Kiziroglou, M.E. and Yeatman, E.M., Materials and techniques for energy harvesting, Functional Materials for Sustainable Energy Applications, Woodhead Publ., 2012, pp. 541–572.
22.
go back to reference Chirap, A., Popa, V., Coca, E., and Potorac, D.A., A study on light energy harvesting from indoor environment: The autonomous sensor nodes, in 2014 International Conference on Development and Application Systems (DAS), IEEE, 2014, pp. 127–131. Chirap, A., Popa, V., Coca, E., and Potorac, D.A., A study on light energy harvesting from indoor environment: The autonomous sensor nodes, in 2014 International Conference on Development and Application Systems (DAS), IEEE, 2014, pp. 127–131.
23.
go back to reference Choudhary, P., Bhargava, L., Singh, V., Choudhary, M., and kumar Suhag, A., A survey – Energy harvesting sources and techniques for internet of things devices, Mater. Today: Proc., 2020, vol. 30, no. 1, pp. 52–56. Choudhary, P., Bhargava, L., Singh, V., Choudhary, M., and kumar Suhag, A., A survey – Energy harvesting sources and techniques for internet of things devices, Mater. Today: Proc., 2020, vol. 30, no. 1, pp. 52–56.
24.
go back to reference Dziadak, B., Makowski, Ł. and Michalski, A., Survey of energy harvesting systems for wireless sensor networks in environmental monitoring, Metrol. Meas. Syst., 2016, vol. 23, no. 4, pp. 495–512.CrossRef Dziadak, B., Makowski, Ł. and Michalski, A., Survey of energy harvesting systems for wireless sensor networks in environmental monitoring, Metrol. Meas. Syst., 2016, vol. 23, no. 4, pp. 495–512.CrossRef
25.
go back to reference Fish, A., Hamami, S., and Yadid-Pecht, O., Self-powered active pixel sensors for ultra-low-power applications, IEEE Int. Symposium on Circuits and Systems, IEEE, 2005, pp. 5310–5313. Fish, A., Hamami, S., and Yadid-Pecht, O., Self-powered active pixel sensors for ultra-low-power applications, IEEE Int. Symposium on Circuits and Systems, IEEE, 2005, pp. 5310–5313.
26.
go back to reference Liao, M., Koide, Y., and Alvarez, J., Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond, Appl. Phys. Lett., 2007, vol. 90, no. 12, pp. 123507.CrossRef Liao, M., Koide, Y., and Alvarez, J., Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond, Appl. Phys. Lett., 2007, vol. 90, no. 12, pp. 123507.CrossRef
27.
go back to reference Ruan, C., Zhao, W., Zhu, S.L., Liu, H.J., Yang, H.C., and Ruan, C.L., Characterization of photoconductive semiconductor switches under nonlinear mode condition, Microwave Opt. Technol. Lett., 2009, vol. 51, no. 1, pp. 56–59.CrossRef Ruan, C., Zhao, W., Zhu, S.L., Liu, H.J., Yang, H.C., and Ruan, C.L., Characterization of photoconductive semiconductor switches under nonlinear mode condition, Microwave Opt. Technol. Lett., 2009, vol. 51, no. 1, pp. 56–59.CrossRef
28.
go back to reference Cemine, V.J., Sarmiento, R., and Blanca, C.M., High-resolution mapping of the energy conversion efficiency of solar cells and silicon photodiodes in photovoltaic mode, Opt. Commun., 2008, vol. 281, no. 22, pp. 5580–5587.CrossRef Cemine, V.J., Sarmiento, R., and Blanca, C.M., High-resolution mapping of the energy conversion efficiency of solar cells and silicon photodiodes in photovoltaic mode, Opt. Commun., 2008, vol. 281, no. 22, pp. 5580–5587.CrossRef
29.
go back to reference Wei, Y., Lehmann, T., Silvestri, L., Wang, H., and Ladouceur, F., Photodiode working in zero-mode: detecting light power change with DC rejection and AC amplification, Opt. Express, 2021, vol. 29, no. 12, pp. 18915–18931.CrossRef Wei, Y., Lehmann, T., Silvestri, L., Wang, H., and Ladouceur, F., Photodiode working in zero-mode: detecting light power change with DC rejection and AC amplification, Opt. Express, 2021, vol. 29, no. 12, pp. 18915–18931.CrossRef
30.
go back to reference Soon, J.J. and Low, K.S., Optimizing photovoltaic model parameters for simulation, in 2012 IEEE Int. Symposium on Industrial Electronics, IEEE, 2012, pp. 1813–1818. Soon, J.J. and Low, K.S., Optimizing photovoltaic model parameters for simulation, in 2012 IEEE Int. Symposium on Industrial Electronics, IEEE, 2012, pp. 1813–1818.
31.
go back to reference Bader, S., Ma, X., and Oelmann, B., One-diode photovoltaic model parameters at indoor illumination levels – A comparison, Sol. Energy, 2019, vol. 180, pp. 707–716.CrossRef Bader, S., Ma, X., and Oelmann, B., One-diode photovoltaic model parameters at indoor illumination levels – A comparison, Sol. Energy, 2019, vol. 180, pp. 707–716.CrossRef
32.
go back to reference da Costa, W.T., Fardin, J.F., Simonetti, D.S., and de VBM Neto, L., Identification of photovoltaic model parameters by differential evolution, in 2010 IEEE Int. Conference on Industrial Technology, IEEE, 2010, pp. 931–936. da Costa, W.T., Fardin, J.F., Simonetti, D.S., and de VBM Neto, L., Identification of photovoltaic model parameters by differential evolution, in 2010 IEEE Int. Conference on Industrial Technology, IEEE, 2010, pp. 931–936.
33.
go back to reference Ahmed, M.T., Gonçalves, T., and Tlemcani, M., Single diode model parameters analysis of photovoltaic cell, in 2016 IEEE Int. Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2016, pp. 396–400. Ahmed, M.T., Gonçalves, T., and Tlemcani, M., Single diode model parameters analysis of photovoltaic cell, in 2016 IEEE Int. Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2016, pp. 396–400.
34.
go back to reference Dwik, S. and Somasundaram, N., Modeling and simulation of two-dimensional position sensitive detector (PSD) sensor, Int. J. Innovative Technol. Explor. Eng. (IJITEE), 2019, vol. 9, no. 1, pp. 744–753.CrossRef Dwik, S. and Somasundaram, N., Modeling and simulation of two-dimensional position sensitive detector (PSD) sensor, Int. J. Innovative Technol. Explor. Eng. (IJITEE), 2019, vol. 9, no. 1, pp. 744–753.CrossRef
35.
go back to reference Ivan, I.A., Ardeleanu, M., and Laurent, G.J., High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: Application to 2D object tracking over a smart surface, Sensors, 2012, vol. 12, no. 12, pp. 16771–16784.CrossRef Ivan, I.A., Ardeleanu, M., and Laurent, G.J., High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: Application to 2D object tracking over a smart surface, Sensors, 2012, vol. 12, no. 12, pp. 16771–16784.CrossRef
36.
go back to reference Heweage, M.F., Wen, X., and Eldamarawy, A., Developing laser spot position determination circuit modeling and measurements with a quad detector, Int. J. Model. Optim., 2016, vol. 6, no. 6, pp. 310–316.CrossRef Heweage, M.F., Wen, X., and Eldamarawy, A., Developing laser spot position determination circuit modeling and measurements with a quad detector, Int. J. Model. Optim., 2016, vol. 6, no. 6, pp. 310–316.CrossRef
37.
go back to reference Kim, S.M. and Won, J.S., Simultaneous reception of visible light communication and optical energy using a solar cell receiver, in 2013 Int. Conference on ICT Convergence (ICTC), IEEE, 2013, pp. 896–897. Kim, S.M. and Won, J.S., Simultaneous reception of visible light communication and optical energy using a solar cell receiver, in 2013 Int. Conference on ICT Convergence (ICTC), IEEE, 2013, pp. 896–897.
38.
go back to reference Wang, Z., Tsonev, D., Videv, S., and Haas, H., On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting, IEEE J. Sel. Areas Commun., 2015, vol. 33, no. 8, pp. 1612–1623.CrossRef Wang, Z., Tsonev, D., Videv, S., and Haas, H., On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting, IEEE J. Sel. Areas Commun., 2015, vol. 33, no. 8, pp. 1612–1623.CrossRef
39.
go back to reference Fakidis, J., Videv, S., Helmers, H., and Haas, H., 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell, IEEE Photonics Technol. Lett., 2018, vol. 30, no. 9, pp. 841–844.CrossRef Fakidis, J., Videv, S., Helmers, H., and Haas, H., 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell, IEEE Photonics Technol. Lett., 2018, vol. 30, no. 9, pp. 841–844.CrossRef
40.
go back to reference Wang, H.Y., Wu, J.T., Chow, C.W., Liu, Y., Yeh, C.H., Liao, X.L., Lin, K.H., Wu, W.L., and Chen, Y.Y., Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication, Opt. Commun., 2018, vol. 407, pp. 245–249.CrossRef Wang, H.Y., Wu, J.T., Chow, C.W., Liu, Y., Yeh, C.H., Liao, X.L., Lin, K.H., Wu, W.L., and Chen, Y.Y., Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication, Opt. Commun., 2018, vol. 407, pp. 245–249.CrossRef
41.
go back to reference Kong, M., Lin, J., Guo, Y., Sun, X., Sait, M., Alkhazragi, O., Kang, C.H., Holguin-Lerma, J.A., Kheireddine, M., Ouhssain, M., and Jones, B.H., AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater Internet-of-Things, IEEE Photonics J., 2020, vol. 12, no. 4, pp. 1–13. Kong, M., Lin, J., Guo, Y., Sun, X., Sait, M., Alkhazragi, O., Kang, C.H., Holguin-Lerma, J.A., Kheireddine, M., Ouhssain, M., and Jones, B.H., AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater Internet-of-Things, IEEE Photonics J., 2020, vol. 12, no. 4, pp. 1–13.
42.
go back to reference Dwik, S. and Prabhaker, M.L.C., Survey on energy harvesting CMOS sensor based digital camera, Opt. Mem. Neural Networks, 2022, vol. 31, no. 1, pp. 97–106.CrossRef Dwik, S. and Prabhaker, M.L.C., Survey on energy harvesting CMOS sensor based digital camera, Opt. Mem. Neural Networks, 2022, vol. 31, no. 1, pp. 97–106.CrossRef
43.
go back to reference Nayar, S.K., Sims, D.C., and Fridberg, M., Towards self-powered cameras, 2015 IEEE Int. Conf. on Computational Photography (ICCP), IEEE, 2015, pp. 1–10. Nayar, S.K., Sims, D.C., and Fridberg, M., Towards self-powered cameras, 2015 IEEE Int. Conf. on Computational Photography (ICCP), IEEE, 2015, pp. 1–10.
44.
go back to reference Law, M.K., Bermak, A., and Shi, C., A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme, IEEE Trans. Circuits Syst., II: Express Briefs, 2011, vol. 58, no. 2, pp. 80–84. Law, M.K., Bermak, A., and Shi, C., A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme, IEEE Trans. Circuits Syst., II: Express Briefs, 2011, vol. 58, no. 2, pp. 80–84.
45.
go back to reference Wang, H.T. and Leon-Salas, W.D., An image sensor with joint sensing and energy harvesting functions, IEEE Sens. J., 2015, vol. 15, no. 2, pp. 902–916.CrossRef Wang, H.T. and Leon-Salas, W.D., An image sensor with joint sensing and energy harvesting functions, IEEE Sens. J., 2015, vol. 15, no. 2, pp. 902–916.CrossRef
46.
go back to reference Khaled, T.A., Elkhatib, M.M., and El-Sherif, A.F., Design and Simulation of an Intelligent Laser Tracking System, Int. J. Signal Process. Syst., 2016, vol. 4, no. 4, pp. 328–333.CrossRef Khaled, T.A., Elkhatib, M.M., and El-Sherif, A.F., Design and Simulation of an Intelligent Laser Tracking System, Int. J. Signal Process. Syst., 2016, vol. 4, no. 4, pp. 328–333.CrossRef
47.
go back to reference Dwik, S., Somasundaram, N., al Musalli, T., and Amaya, M., Simple LASER tracking algorithm using Programmable System on Chip (PSoC) for Visible Light Communication (VLC), Opt. Mem. Neural Networks, 2022, vol. 31, no. 3, pp. 296–308.CrossRef Dwik, S., Somasundaram, N., al Musalli, T., and Amaya, M., Simple LASER tracking algorithm using Programmable System on Chip (PSoC) for Visible Light Communication (VLC), Opt. Mem. Neural Networks, 2022, vol. 31, no. 3, pp. 296–308.CrossRef
48.
go back to reference Kimme, F., Brick, P., Chatterjee, S., and Khanh, T.Q., Optimized flash light-emitting diode spectra for mobile phone cameras, Appl. Opt., 2013, vol. 52, no. 36, pp. 8779–8788.CrossRef Kimme, F., Brick, P., Chatterjee, S., and Khanh, T.Q., Optimized flash light-emitting diode spectra for mobile phone cameras, Appl. Opt., 2013, vol. 52, no. 36, pp. 8779–8788.CrossRef
49.
go back to reference Ryer, A., Light, U., and Light, V., Light Measurement Handbook, International Light, 1997. Ryer, A., Light, U., and Light, V., Light Measurement Handbook, International Light, 1997.
50.
go back to reference Michael, P.R., Johnston, D.E., and Moreno, W., A conversion guide: solar irradiance and lux illuminance, J. Meas. Eng., 2020, vol. 8, no. 4, pp. 153–166.CrossRef Michael, P.R., Johnston, D.E., and Moreno, W., A conversion guide: solar irradiance and lux illuminance, J. Meas. Eng., 2020, vol. 8, no. 4, pp. 153–166.CrossRef
Metadata
Title
Design and Simulation of a Reconfigurable Multifunctional Optical Sensor
Authors
Shaher Dwik
G. Sasikala
S. Natarajan
Publication date
01-06-2023
Publisher
Pleiades Publishing
Published in
Optical Memory and Neural Networks / Issue 2/2023
Print ISSN: 1060-992X
Electronic ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X2302008X

Other articles of this Issue 2/2023

Optical Memory and Neural Networks 2/2023 Go to the issue

Premium Partner