Skip to main content
Erschienen in: Optical Memory and Neural Networks 2/2023

01.06.2023

Design and Simulation of a Reconfigurable Multifunctional Optical Sensor

verfasst von: Shaher Dwik, G. Sasikala, S. Natarajan

Erschienen in: Optical Memory and Neural Networks | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Generally, in Visible Light Communication (VLC) systems, Position Sensitive Device (PSD) sensor is used only for tracking purposes. However, the tracking process functions until both transmitter and receiver align, thus the PSD sensor remains idle for a long time. This interval can be exploited to achieve other functions by modifying its architecture. In this paper, a modification of the PSD structure has been achieved to make it able to perform energy harvesting and data acquisition as well as tracking. As the PSD is mainly formed of an array of photodiodes, our main idea is to use transistors to switch between the two modes of operation of the photodiodes (photoconductive and photovoltaic). Furthermore, switching between the output pins could be achieved depending on the desired function. The proposed sensor can extend the battery lifetime, increase the integration and the functionality, and reduce the physical size of the system. Simulation using MATALB was performed to validate the concept of the proposed structure and its operation. The results showed that the proposed sensor works successfully and it can be considered for further manufacturing levels. The presented sensor might be used in Free Space Optical (FSO) communication like cube satellite, or even in Underwater Wireless Optical Communication (UWOC).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ndjiongue, A.R., Ferreira, H.C., and Ngatched, T.M., Visible light communications (VLC) technology, Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, pp. 1–15. Ndjiongue, A.R., Ferreira, H.C., and Ngatched, T.M., Visible light communications (VLC) technology, Wiley Encyclopedia of Electrical and Electronics Engineering, 1999, pp. 1–15.
3.
Zurück zum Zitat Kumar, N., Lourenco, N., Spiez, M., and Aguiar, R.L., Visible light communication systems conception and vidas, IETE Tech. Rev., 2008, vol. 25, no. 6, pp. 359–367.CrossRef Kumar, N., Lourenco, N., Spiez, M., and Aguiar, R.L., Visible light communication systems conception and vidas, IETE Tech. Rev., 2008, vol. 25, no. 6, pp. 359–367.CrossRef
4.
Zurück zum Zitat Cevik, T. and Yilmaz, S., An overview of visible light communication systems, Int. J. Comput. Networks Commun. (IJCNC), 2015, vol. 7, no. 6, pp. 139–150.CrossRef Cevik, T. and Yilmaz, S., An overview of visible light communication systems, Int. J. Comput. Networks Commun. (IJCNC), 2015, vol. 7, no. 6, pp. 139–150.CrossRef
5.
Zurück zum Zitat Liu, Z., Guan, W., and Wen, S., Improved target signal source tracking and extraction method based on outdoor visible light communication using an improved particle filter algorithm based on Cam-Shift algorithm, IEEE Photonics J., 2019, vol. 11, no. 6, pp. 1–20. Liu, Z., Guan, W., and Wen, S., Improved target signal source tracking and extraction method based on outdoor visible light communication using an improved particle filter algorithm based on Cam-Shift algorithm, IEEE Photonics J., 2019, vol. 11, no. 6, pp. 1–20.
6.
Zurück zum Zitat Do, T.H. and Yoo, M., An in-depth survey of visible light communication based positioning systems, Sensors, 2016, vol. 16, no. 5, p. 678.CrossRef Do, T.H. and Yoo, M., An in-depth survey of visible light communication based positioning systems, Sensors, 2016, vol. 16, no. 5, p. 678.CrossRef
7.
Zurück zum Zitat Othman, A. and Maga, D., Indoor photovoltaic energy harvester with rechargeable battery for wireless sensor node, in 2018 18th International Conference on Mechatronics-Mechatronika (ME), IEEE, pp. 1–6. Othman, A. and Maga, D., Indoor photovoltaic energy harvester with rechargeable battery for wireless sensor node, in 2018 18th International Conference on Mechatronics-Mechatronika (ME), IEEE, pp. 1–6.
8.
Zurück zum Zitat Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., and Haas, H., VLC: Beyond point-to-point communication, IEEE Commun. Mag., 2014, vol. 52, no. 7, pp. 98–105.CrossRef Burchardt, H., Serafimovski, N., Tsonev, D., Videv, S., and Haas, H., VLC: Beyond point-to-point communication, IEEE Commun. Mag., 2014, vol. 52, no. 7, pp. 98–105.CrossRef
9.
Zurück zum Zitat Luo, J., Fan, L., and Li, H., Indoor positioning systems based on visible light communication: State of the art, IEEE Commun. Surv. Tutorials, 2017, vol. 19 no. 4, pp. 2871–2893.CrossRef Luo, J., Fan, L., and Li, H., Indoor positioning systems based on visible light communication: State of the art, IEEE Commun. Surv. Tutorials, 2017, vol. 19 no. 4, pp. 2871–2893.CrossRef
10.
Zurück zum Zitat Albayati, S., An overview of visible light communication systems, Int. J. Comput. Sci. Mobile Comput., 2019, vol. 8, no. 6, pp. 51–56. Albayati, S., An overview of visible light communication systems, Int. J. Comput. Sci. Mobile Comput., 2019, vol. 8, no. 6, pp. 51–56.
11.
Zurück zum Zitat Obeed, M., Salhab, A.M., Alouini, M.S., and Zummo, S.A., On optimizing VLC networks for downlink multi-user transmission: A survey, IEEE Commun. Surv. Tutorials, 2019, vol. 21, no. 3, pp. 2947–2976.CrossRef Obeed, M., Salhab, A.M., Alouini, M.S., and Zummo, S.A., On optimizing VLC networks for downlink multi-user transmission: A survey, IEEE Commun. Surv. Tutorials, 2019, vol. 21, no. 3, pp. 2947–2976.CrossRef
12.
Zurück zum Zitat Ge, P., Liang, X., Wang, J., Zhao, C., Gao, X., and Ding, Z., Optical filter designs for multi-color visible light communication, IEEE Trans. Commun., 2018, vol. 67, no. 3, pp. 2173–2187.CrossRef Ge, P., Liang, X., Wang, J., Zhao, C., Gao, X., and Ding, Z., Optical filter designs for multi-color visible light communication, IEEE Trans. Commun., 2018, vol. 67, no. 3, pp. 2173–2187.CrossRef
13.
Zurück zum Zitat Tedeschi, P., Sciancalepore, S., and Di Pietro, R., Security in energy harvesting networks: A survey of current solutions and research challenges, IEEE Commun. Surv. Tutorials, 2020, vol. 22, no. 4, pp. 2658–2693.CrossRef Tedeschi, P., Sciancalepore, S., and Di Pietro, R., Security in energy harvesting networks: A survey of current solutions and research challenges, IEEE Commun. Surv. Tutorials, 2020, vol. 22, no. 4, pp. 2658–2693.CrossRef
14.
Zurück zum Zitat Blinowski, G., Security of visible light communication systems –A survey, Phys. Commun., 2019, vol. 34, pp. 246–260.CrossRef Blinowski, G., Security of visible light communication systems –A survey, Phys. Commun., 2019, vol. 34, pp. 246–260.CrossRef
15.
Zurück zum Zitat Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G.P., and Hamblin, M.R., Photoantimicrobials—Are we afraid of the light?, Lancet Infect. Dis., 2017, vol. 17, no. 2, pp. e49–e55.CrossRef Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G.P., and Hamblin, M.R., Photoantimicrobials—Are we afraid of the light?, Lancet Infect. Dis., 2017, vol. 17, no. 2, pp. e49–e55.CrossRef
16.
Zurück zum Zitat Căilean, A.M., and Dimian, M., Current challenges for visible light communications usage in vehicle applications: A survey, IEEE Commun. Surv. Tutorials, 2017, vol. 19, no. 4, pp. 2681–2703.CrossRef Căilean, A.M., and Dimian, M., Current challenges for visible light communications usage in vehicle applications: A survey, IEEE Commun. Surv. Tutorials, 2017, vol. 19, no. 4, pp. 2681–2703.CrossRef
17.
Zurück zum Zitat Sheoran, S., Garg, P., and Sharma, P.K., Location tracking for indoor VLC systems using intelligent photodiode receiver, IET Commun., 2018, vol. 12, no. 13, pp. 1589–1594.CrossRef Sheoran, S., Garg, P., and Sharma, P.K., Location tracking for indoor VLC systems using intelligent photodiode receiver, IET Commun., 2018, vol. 12, no. 13, pp. 1589–1594.CrossRef
18.
Zurück zum Zitat Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., and Zhang, T., A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications, IEEE Commun. Surv. Tutorials, 2018, vol. 20, no. 2, pp. 1104–1123.CrossRef Kaymak, Y., Rojas-Cessa, R., Feng, J., Ansari, N., Zhou, M., and Zhang, T., A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications, IEEE Commun. Surv. Tutorials, 2018, vol. 20, no. 2, pp. 1104–1123.CrossRef
19.
Zurück zum Zitat Kong, M., Kang, C.H., Alkhazragi, O., Sun, X., Guo, Y., Sait, M., Holguin-Lerma, J.A., Ng, T.K., and Ooi, B.S., Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication, Prog. Quant. Electronics, 2020, vol. 74, p. 100300.CrossRef Kong, M., Kang, C.H., Alkhazragi, O., Sun, X., Guo, Y., Sait, M., Holguin-Lerma, J.A., Ng, T.K., and Ooi, B.S., Survey of energy-autonomous solar cell receivers for satellite–air–ground–ocean optical wireless communication, Prog. Quant. Electronics, 2020, vol. 74, p. 100300.CrossRef
20.
Zurück zum Zitat Khan, A.S. and Khan, F.U., A survey of wearable energy harvesting systems, Int. J. Energy Res., 2022, vol. 46, no. 3, pp. 2277–2329.CrossRef Khan, A.S. and Khan, F.U., A survey of wearable energy harvesting systems, Int. J. Energy Res., 2022, vol. 46, no. 3, pp. 2277–2329.CrossRef
21.
Zurück zum Zitat Kiziroglou, M.E. and Yeatman, E.M., Materials and techniques for energy harvesting, Functional Materials for Sustainable Energy Applications, Woodhead Publ., 2012, pp. 541–572. Kiziroglou, M.E. and Yeatman, E.M., Materials and techniques for energy harvesting, Functional Materials for Sustainable Energy Applications, Woodhead Publ., 2012, pp. 541–572.
22.
Zurück zum Zitat Chirap, A., Popa, V., Coca, E., and Potorac, D.A., A study on light energy harvesting from indoor environment: The autonomous sensor nodes, in 2014 International Conference on Development and Application Systems (DAS), IEEE, 2014, pp. 127–131. Chirap, A., Popa, V., Coca, E., and Potorac, D.A., A study on light energy harvesting from indoor environment: The autonomous sensor nodes, in 2014 International Conference on Development and Application Systems (DAS), IEEE, 2014, pp. 127–131.
23.
Zurück zum Zitat Choudhary, P., Bhargava, L., Singh, V., Choudhary, M., and kumar Suhag, A., A survey – Energy harvesting sources and techniques for internet of things devices, Mater. Today: Proc., 2020, vol. 30, no. 1, pp. 52–56. Choudhary, P., Bhargava, L., Singh, V., Choudhary, M., and kumar Suhag, A., A survey – Energy harvesting sources and techniques for internet of things devices, Mater. Today: Proc., 2020, vol. 30, no. 1, pp. 52–56.
24.
Zurück zum Zitat Dziadak, B., Makowski, Ł. and Michalski, A., Survey of energy harvesting systems for wireless sensor networks in environmental monitoring, Metrol. Meas. Syst., 2016, vol. 23, no. 4, pp. 495–512.CrossRef Dziadak, B., Makowski, Ł. and Michalski, A., Survey of energy harvesting systems for wireless sensor networks in environmental monitoring, Metrol. Meas. Syst., 2016, vol. 23, no. 4, pp. 495–512.CrossRef
25.
Zurück zum Zitat Fish, A., Hamami, S., and Yadid-Pecht, O., Self-powered active pixel sensors for ultra-low-power applications, IEEE Int. Symposium on Circuits and Systems, IEEE, 2005, pp. 5310–5313. Fish, A., Hamami, S., and Yadid-Pecht, O., Self-powered active pixel sensors for ultra-low-power applications, IEEE Int. Symposium on Circuits and Systems, IEEE, 2005, pp. 5310–5313.
26.
Zurück zum Zitat Liao, M., Koide, Y., and Alvarez, J., Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond, Appl. Phys. Lett., 2007, vol. 90, no. 12, pp. 123507.CrossRef Liao, M., Koide, Y., and Alvarez, J., Single Schottky-barrier photodiode with interdigitated-finger geometry: Application to diamond, Appl. Phys. Lett., 2007, vol. 90, no. 12, pp. 123507.CrossRef
27.
Zurück zum Zitat Ruan, C., Zhao, W., Zhu, S.L., Liu, H.J., Yang, H.C., and Ruan, C.L., Characterization of photoconductive semiconductor switches under nonlinear mode condition, Microwave Opt. Technol. Lett., 2009, vol. 51, no. 1, pp. 56–59.CrossRef Ruan, C., Zhao, W., Zhu, S.L., Liu, H.J., Yang, H.C., and Ruan, C.L., Characterization of photoconductive semiconductor switches under nonlinear mode condition, Microwave Opt. Technol. Lett., 2009, vol. 51, no. 1, pp. 56–59.CrossRef
28.
Zurück zum Zitat Cemine, V.J., Sarmiento, R., and Blanca, C.M., High-resolution mapping of the energy conversion efficiency of solar cells and silicon photodiodes in photovoltaic mode, Opt. Commun., 2008, vol. 281, no. 22, pp. 5580–5587.CrossRef Cemine, V.J., Sarmiento, R., and Blanca, C.M., High-resolution mapping of the energy conversion efficiency of solar cells and silicon photodiodes in photovoltaic mode, Opt. Commun., 2008, vol. 281, no. 22, pp. 5580–5587.CrossRef
29.
Zurück zum Zitat Wei, Y., Lehmann, T., Silvestri, L., Wang, H., and Ladouceur, F., Photodiode working in zero-mode: detecting light power change with DC rejection and AC amplification, Opt. Express, 2021, vol. 29, no. 12, pp. 18915–18931.CrossRef Wei, Y., Lehmann, T., Silvestri, L., Wang, H., and Ladouceur, F., Photodiode working in zero-mode: detecting light power change with DC rejection and AC amplification, Opt. Express, 2021, vol. 29, no. 12, pp. 18915–18931.CrossRef
30.
Zurück zum Zitat Soon, J.J. and Low, K.S., Optimizing photovoltaic model parameters for simulation, in 2012 IEEE Int. Symposium on Industrial Electronics, IEEE, 2012, pp. 1813–1818. Soon, J.J. and Low, K.S., Optimizing photovoltaic model parameters for simulation, in 2012 IEEE Int. Symposium on Industrial Electronics, IEEE, 2012, pp. 1813–1818.
31.
Zurück zum Zitat Bader, S., Ma, X., and Oelmann, B., One-diode photovoltaic model parameters at indoor illumination levels – A comparison, Sol. Energy, 2019, vol. 180, pp. 707–716.CrossRef Bader, S., Ma, X., and Oelmann, B., One-diode photovoltaic model parameters at indoor illumination levels – A comparison, Sol. Energy, 2019, vol. 180, pp. 707–716.CrossRef
32.
Zurück zum Zitat da Costa, W.T., Fardin, J.F., Simonetti, D.S., and de VBM Neto, L., Identification of photovoltaic model parameters by differential evolution, in 2010 IEEE Int. Conference on Industrial Technology, IEEE, 2010, pp. 931–936. da Costa, W.T., Fardin, J.F., Simonetti, D.S., and de VBM Neto, L., Identification of photovoltaic model parameters by differential evolution, in 2010 IEEE Int. Conference on Industrial Technology, IEEE, 2010, pp. 931–936.
33.
Zurück zum Zitat Ahmed, M.T., Gonçalves, T., and Tlemcani, M., Single diode model parameters analysis of photovoltaic cell, in 2016 IEEE Int. Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2016, pp. 396–400. Ahmed, M.T., Gonçalves, T., and Tlemcani, M., Single diode model parameters analysis of photovoltaic cell, in 2016 IEEE Int. Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2016, pp. 396–400.
34.
Zurück zum Zitat Dwik, S. and Somasundaram, N., Modeling and simulation of two-dimensional position sensitive detector (PSD) sensor, Int. J. Innovative Technol. Explor. Eng. (IJITEE), 2019, vol. 9, no. 1, pp. 744–753.CrossRef Dwik, S. and Somasundaram, N., Modeling and simulation of two-dimensional position sensitive detector (PSD) sensor, Int. J. Innovative Technol. Explor. Eng. (IJITEE), 2019, vol. 9, no. 1, pp. 744–753.CrossRef
35.
Zurück zum Zitat Ivan, I.A., Ardeleanu, M., and Laurent, G.J., High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: Application to 2D object tracking over a smart surface, Sensors, 2012, vol. 12, no. 12, pp. 16771–16784.CrossRef Ivan, I.A., Ardeleanu, M., and Laurent, G.J., High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: Application to 2D object tracking over a smart surface, Sensors, 2012, vol. 12, no. 12, pp. 16771–16784.CrossRef
36.
Zurück zum Zitat Heweage, M.F., Wen, X., and Eldamarawy, A., Developing laser spot position determination circuit modeling and measurements with a quad detector, Int. J. Model. Optim., 2016, vol. 6, no. 6, pp. 310–316.CrossRef Heweage, M.F., Wen, X., and Eldamarawy, A., Developing laser spot position determination circuit modeling and measurements with a quad detector, Int. J. Model. Optim., 2016, vol. 6, no. 6, pp. 310–316.CrossRef
37.
Zurück zum Zitat Kim, S.M. and Won, J.S., Simultaneous reception of visible light communication and optical energy using a solar cell receiver, in 2013 Int. Conference on ICT Convergence (ICTC), IEEE, 2013, pp. 896–897. Kim, S.M. and Won, J.S., Simultaneous reception of visible light communication and optical energy using a solar cell receiver, in 2013 Int. Conference on ICT Convergence (ICTC), IEEE, 2013, pp. 896–897.
38.
Zurück zum Zitat Wang, Z., Tsonev, D., Videv, S., and Haas, H., On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting, IEEE J. Sel. Areas Commun., 2015, vol. 33, no. 8, pp. 1612–1623.CrossRef Wang, Z., Tsonev, D., Videv, S., and Haas, H., On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting, IEEE J. Sel. Areas Commun., 2015, vol. 33, no. 8, pp. 1612–1623.CrossRef
39.
Zurück zum Zitat Fakidis, J., Videv, S., Helmers, H., and Haas, H., 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell, IEEE Photonics Technol. Lett., 2018, vol. 30, no. 9, pp. 841–844.CrossRef Fakidis, J., Videv, S., Helmers, H., and Haas, H., 0.5-Gb/s OFDM-based laser data and power transfer using a GaAs photovoltaic cell, IEEE Photonics Technol. Lett., 2018, vol. 30, no. 9, pp. 841–844.CrossRef
40.
Zurück zum Zitat Wang, H.Y., Wu, J.T., Chow, C.W., Liu, Y., Yeh, C.H., Liao, X.L., Lin, K.H., Wu, W.L., and Chen, Y.Y., Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication, Opt. Commun., 2018, vol. 407, pp. 245–249.CrossRef Wang, H.Y., Wu, J.T., Chow, C.W., Liu, Y., Yeh, C.H., Liao, X.L., Lin, K.H., Wu, W.L., and Chen, Y.Y., Using pre-distorted PAM-4 signal and parallel resistance circuit to enhance the passive solar cell based visible light communication, Opt. Commun., 2018, vol. 407, pp. 245–249.CrossRef
41.
Zurück zum Zitat Kong, M., Lin, J., Guo, Y., Sun, X., Sait, M., Alkhazragi, O., Kang, C.H., Holguin-Lerma, J.A., Kheireddine, M., Ouhssain, M., and Jones, B.H., AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater Internet-of-Things, IEEE Photonics J., 2020, vol. 12, no. 4, pp. 1–13. Kong, M., Lin, J., Guo, Y., Sun, X., Sait, M., Alkhazragi, O., Kang, C.H., Holguin-Lerma, J.A., Kheireddine, M., Ouhssain, M., and Jones, B.H., AquaE-lite hybrid-solar-cell receiver-modality for energy-autonomous terrestrial and underwater Internet-of-Things, IEEE Photonics J., 2020, vol. 12, no. 4, pp. 1–13.
42.
Zurück zum Zitat Dwik, S. and Prabhaker, M.L.C., Survey on energy harvesting CMOS sensor based digital camera, Opt. Mem. Neural Networks, 2022, vol. 31, no. 1, pp. 97–106.CrossRef Dwik, S. and Prabhaker, M.L.C., Survey on energy harvesting CMOS sensor based digital camera, Opt. Mem. Neural Networks, 2022, vol. 31, no. 1, pp. 97–106.CrossRef
43.
Zurück zum Zitat Nayar, S.K., Sims, D.C., and Fridberg, M., Towards self-powered cameras, 2015 IEEE Int. Conf. on Computational Photography (ICCP), IEEE, 2015, pp. 1–10. Nayar, S.K., Sims, D.C., and Fridberg, M., Towards self-powered cameras, 2015 IEEE Int. Conf. on Computational Photography (ICCP), IEEE, 2015, pp. 1–10.
44.
Zurück zum Zitat Law, M.K., Bermak, A., and Shi, C., A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme, IEEE Trans. Circuits Syst., II: Express Briefs, 2011, vol. 58, no. 2, pp. 80–84. Law, M.K., Bermak, A., and Shi, C., A low-power energy-harvesting logarithmic CMOS image sensor with reconfigurable resolution using two-level quantization scheme, IEEE Trans. Circuits Syst., II: Express Briefs, 2011, vol. 58, no. 2, pp. 80–84.
45.
Zurück zum Zitat Wang, H.T. and Leon-Salas, W.D., An image sensor with joint sensing and energy harvesting functions, IEEE Sens. J., 2015, vol. 15, no. 2, pp. 902–916.CrossRef Wang, H.T. and Leon-Salas, W.D., An image sensor with joint sensing and energy harvesting functions, IEEE Sens. J., 2015, vol. 15, no. 2, pp. 902–916.CrossRef
46.
Zurück zum Zitat Khaled, T.A., Elkhatib, M.M., and El-Sherif, A.F., Design and Simulation of an Intelligent Laser Tracking System, Int. J. Signal Process. Syst., 2016, vol. 4, no. 4, pp. 328–333.CrossRef Khaled, T.A., Elkhatib, M.M., and El-Sherif, A.F., Design and Simulation of an Intelligent Laser Tracking System, Int. J. Signal Process. Syst., 2016, vol. 4, no. 4, pp. 328–333.CrossRef
47.
Zurück zum Zitat Dwik, S., Somasundaram, N., al Musalli, T., and Amaya, M., Simple LASER tracking algorithm using Programmable System on Chip (PSoC) for Visible Light Communication (VLC), Opt. Mem. Neural Networks, 2022, vol. 31, no. 3, pp. 296–308.CrossRef Dwik, S., Somasundaram, N., al Musalli, T., and Amaya, M., Simple LASER tracking algorithm using Programmable System on Chip (PSoC) for Visible Light Communication (VLC), Opt. Mem. Neural Networks, 2022, vol. 31, no. 3, pp. 296–308.CrossRef
48.
Zurück zum Zitat Kimme, F., Brick, P., Chatterjee, S., and Khanh, T.Q., Optimized flash light-emitting diode spectra for mobile phone cameras, Appl. Opt., 2013, vol. 52, no. 36, pp. 8779–8788.CrossRef Kimme, F., Brick, P., Chatterjee, S., and Khanh, T.Q., Optimized flash light-emitting diode spectra for mobile phone cameras, Appl. Opt., 2013, vol. 52, no. 36, pp. 8779–8788.CrossRef
49.
Zurück zum Zitat Ryer, A., Light, U., and Light, V., Light Measurement Handbook, International Light, 1997. Ryer, A., Light, U., and Light, V., Light Measurement Handbook, International Light, 1997.
50.
Zurück zum Zitat Michael, P.R., Johnston, D.E., and Moreno, W., A conversion guide: solar irradiance and lux illuminance, J. Meas. Eng., 2020, vol. 8, no. 4, pp. 153–166.CrossRef Michael, P.R., Johnston, D.E., and Moreno, W., A conversion guide: solar irradiance and lux illuminance, J. Meas. Eng., 2020, vol. 8, no. 4, pp. 153–166.CrossRef
Metadaten
Titel
Design and Simulation of a Reconfigurable Multifunctional Optical Sensor
verfasst von
Shaher Dwik
G. Sasikala
S. Natarajan
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Optical Memory and Neural Networks / Ausgabe 2/2023
Print ISSN: 1060-992X
Elektronische ISSN: 1934-7898
DOI
https://doi.org/10.3103/S1060992X2302008X

Weitere Artikel der Ausgabe 2/2023

Optical Memory and Neural Networks 2/2023 Zur Ausgabe

Premium Partner