Skip to main content
Top
Published in: Wireless Networks 5/2018

06-01-2017

Design and wet-laboratory implementation of reliable end-to-end molecular communication

Authors: Taro Furubayashi, Yoshihiro Sakatani, Tadashi Nakano, Andrew Eckford, Norikazu Ichihashi

Published in: Wireless Networks | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper describes a novel design and wet laboratory implementation of reliable end-to-end molecular communication. In the reliable end-to-end molecular communication described in this paper, source and destination bio-nanomachines exchange molecular packets through intermediate bio-nanomachines that are capable of packet replication. A source bio-nanomachine forms a molecular packet and transmits the molecular packet into the environment. An intermediate bio-nanomachine detects a molecular packet and produces its copies through packet replication. A destination bio-nanomachine, upon reception of a molecular packet, produces an acknowledgment molecular packet and transmits back to the source bio-nanomachine. This paper describes how the reliable end-to-end molecular communication can be biochemically implemented with RNA (ribonucleic acid) molecules and artificial cell systems. It also describes a simulation-based performance evaluation study showing the impact of model parameters on propagation delay in the reliable end-to-end molecular communication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
INFO-RNA and ACK-RNA have different header lengths. An INFO-RNA is longer than an ACK-RNA.
 
2
INFO-RNA and ACK-RNA described in Sect. 3 consist of approximately 2,000 and 200 nucleotides, respectively.
 
Literature
1.
go back to reference Ahmadzadeh, A., Noel, A., & Schober, R. (2014). Analysis and design of two-hop diffusion-based molecular communication networks. In: IEEE global communications conference (GLOBECOM 2014) (pp. 2820–2825). Ahmadzadeh, A., Noel, A., & Schober, R. (2014). Analysis and design of two-hop diffusion-based molecular communication networks. In: IEEE global communications conference (GLOBECOM 2014) (pp. 2820–2825).
2.
go back to reference Akyildiz, I. F., Brunetti, F., & Blazquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.CrossRef Akyildiz, I. F., Brunetti, F., & Blazquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.CrossRef
3.
go back to reference Bai, C., Leeson, M. S., & Higgins, M. D. (2015). Performance of SW-ARQ in bacterial quorum communications. Nano Communication Networks, 6(1), 3–14.CrossRef Bai, C., Leeson, M. S., & Higgins, M. D. (2015). Performance of SW-ARQ in bacterial quorum communications. Nano Communication Networks, 6(1), 3–14.CrossRef
4.
go back to reference Bansho, Y., Furubayashi, T., Ichihashi, N., & Yomo, T. (2016). Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proceedings of the National Academy of Sciences, 113(15), 4045–4050.CrossRef Bansho, Y., Furubayashi, T., Ichihashi, N., & Yomo, T. (2016). Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proceedings of the National Academy of Sciences, 113(15), 4045–4050.CrossRef
5.
go back to reference Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.CrossRef Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.CrossRef
6.
go back to reference Cobo, L. C., & Akyildiz, I. F. (2010). Bacteria-based communication in nanonetworks. Nano Communication Networks, 1(4), 244–256.CrossRef Cobo, L. C., & Akyildiz, I. F. (2010). Bacteria-based communication in nanonetworks. Nano Communication Networks, 1(4), 244–256.CrossRef
7.
go back to reference Eckford, A.W., Farsad, N., Hiyama, S., & Moritani, Y. (2010). Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proceedings of the IEEE international conference on nanotechnology (pp. 854–858). Eckford, A.W., Farsad, N., Hiyama, S., & Moritani, Y. (2010). Microchannel molecular communication with nanoscale carriers: Brownian motion versus active transport. In: Proceedings of the IEEE international conference on nanotechnology (pp. 854–858).
8.
go back to reference Eckford, A.W., Furubayashi, T., & Nakano, T. (2016). RNA as a nanoscale data transmission medium: Error analysis. In: IEEE international conference on nanotechnology (IEEE NANO 2016). Eckford, A.W., Furubayashi, T., & Nakano, T. (2016). RNA as a nanoscale data transmission medium: Error analysis. In: IEEE international conference on nanotechnology (IEEE NANO 2016).
9.
go back to reference Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C.B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys and Tutorials, 18(3), 1887–1919. Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C.B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys and Tutorials, 18(3), 1887–1919.
10.
go back to reference Felicetti, L., Femminella, M., Reali, G., Nakano, T., & Vasilakos, A. V. (2014). TCP-like molecular communications. IEEE Journal of Selected Areas in Communication (JSAC), 32(12), 2354–2367.CrossRef Felicetti, L., Femminella, M., Reali, G., Nakano, T., & Vasilakos, A. V. (2014). TCP-like molecular communications. IEEE Journal of Selected Areas in Communication (JSAC), 32(12), 2354–2367.CrossRef
11.
go back to reference Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y., & Yomo, T. (2013). In vitro evolution of \(\alpha\)-hemolysin using a liposome display. Proceedings of the National Academy of Sciences, 110(42), 16796–16801.CrossRef Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y., & Yomo, T. (2013). In vitro evolution of \(\alpha\)-hemolysin using a liposome display. Proceedings of the National Academy of Sciences, 110(42), 16796–16801.CrossRef
12.
go back to reference Furubayashi, T., Nakano, T., Eckford, A., & Yomo, T. (2015). Reliable end-to-end molecular communication with packet replication and retransmission. In: IEEE global communications conference (GLOBECOM 2015). Furubayashi, T., Nakano, T., Eckford, A., & Yomo, T. (2015). Reliable end-to-end molecular communication with packet replication and retransmission. In: IEEE global communications conference (GLOBECOM 2015).
13.
go back to reference Furubayashi, T., Nakano, T., Okaie, Y., Eckford, A., & Yomo, T. (2016). Packet fragmentation and reassembly in molecular communication. IEEE Transactions on Nanobioscience, 15(3), 284–288.CrossRef Furubayashi, T., Nakano, T., Okaie, Y., Eckford, A., & Yomo, T. (2016). Packet fragmentation and reassembly in molecular communication. IEEE Transactions on Nanobioscience, 15(3), 284–288.CrossRef
14.
go back to reference Hiyama, S., Inoue, T., Shima, T., Moritani, Y., Suda, T., & Sutoh, K. (2008). Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small, 4(4), 410–415.CrossRef Hiyama, S., Inoue, T., Shima, T., Moritani, Y., Suda, T., & Sutoh, K. (2008). Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small, 4(4), 410–415.CrossRef
15.
go back to reference Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., et al. (2005). Molecular communication. Proceedings of the NSTI Nanotechnology Conference, 3, 392–395. Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M., et al. (2005). Molecular communication. Proceedings of the NSTI Nanotechnology Conference, 3, 392–395.
16.
go back to reference Ichihashi, N., Usui, K., Kazuta, Y., Sunami, T., Matsuura, T., & Yomo, T. (2013). Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nature Communications, 4, 2494.CrossRef Ichihashi, N., Usui, K., Kazuta, Y., Sunami, T., Matsuura, T., & Yomo, T. (2013). Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nature Communications, 4, 2494.CrossRef
17.
go back to reference Leeson, M. S., & Higgins, M. D. (2012). Forward error correction for molecular communications. Nano Communication Networks, 3(3), 161–167.CrossRef Leeson, M. S., & Higgins, M. D. (2012). Forward error correction for molecular communications. Nano Communication Networks, 3(3), 161–167.CrossRef
18.
go back to reference Nakano, T., Eckford, A., & Haraguchi, T. (2013). Molecular communication. Cambridge: Cambridge University Press.CrossRef Nakano, T., Eckford, A., & Haraguchi, T. (2013). Molecular communication. Cambridge: Cambridge University Press.CrossRef
19.
go back to reference Nakano, T., Moore, M., Wei, F., Vasilakos, A. V., & Shuai, J. W. (2012). Molecular communication and networking: Opportunities and challenges. IEEE Transactions on NanoBioscience, 11(2), 135–148.CrossRef Nakano, T., Moore, M., Wei, F., Vasilakos, A. V., & Shuai, J. W. (2012). Molecular communication and networking: Opportunities and challenges. IEEE Transactions on NanoBioscience, 11(2), 135–148.CrossRef
20.
go back to reference Nakano, T., Okaie, Y., & Vasilakos, A. V. (2013). Transmission rate control for molecular communication among biological nanomachines. IEEE Journal of Selected Areas in Communication (JSAC), 31(12), 835–846.CrossRef Nakano, T., Okaie, Y., & Vasilakos, A. V. (2013). Transmission rate control for molecular communication among biological nanomachines. IEEE Journal of Selected Areas in Communication (JSAC), 31(12), 835–846.CrossRef
21.
go back to reference Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. In: Proceedings of the 2011 IEEE INFOCOM workshop on molecular and nanoscale communications (pp. 501–506) Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. In: Proceedings of the 2011 IEEE INFOCOM workshop on molecular and nanoscale communications (pp. 501–506)
22.
go back to reference Nilsson, R. J. A., Balaj, L., Hulleman, E., van Rijn, S., Pegtel, D. M., Walraven, M., et al. (2011). Blood platelets contain tumor-derived RNA biomarkers. Blood, 118, 3680–3683.CrossRef Nilsson, R. J. A., Balaj, L., Hulleman, E., van Rijn, S., Pegtel, D. M., Walraven, M., et al. (2011). Blood platelets contain tumor-derived RNA biomarkers. Blood, 118, 3680–3683.CrossRef
23.
go back to reference Nkodo, A. E., Garnier, J. M., Tinland, B., Ren, H., Desruisseaux, C., McCormick, L. C., et al. (2001). Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis, 22(12), 2424–2432.CrossRef Nkodo, A. E., Garnier, J. M., Tinland, B., Ren, H., Desruisseaux, C., McCormick, L. C., et al. (2001). Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis, 22(12), 2424–2432.CrossRef
24.
go back to reference Ortiz, M. E., & Endy, D. (2012). Engineered cell-cell communication via DNA messaging. Journal of Biological Engineering, 6(16), 1. Ortiz, M. E., & Endy, D. (2012). Engineered cell-cell communication via DNA messaging. Journal of Biological Engineering, 6(16), 1.
25.
go back to reference Petrov, V., Balasubramaniam, S., Lale, R., Moltchanov, D., Lio’, P., & Koucheryavy, K. (2014). Forward and reverse coding for chromosome transfer in bacterial nanonetworks. Nano Communication Networks, 5(1–2), 15–24.CrossRef Petrov, V., Balasubramaniam, S., Lale, R., Moltchanov, D., Lio’, P., & Koucheryavy, K. (2014). Forward and reverse coding for chromosome transfer in bacterial nanonetworks. Nano Communication Networks, 5(1–2), 15–24.CrossRef
26.
go back to reference Pierobon, M., & Akyildiz, I. F. (2011). Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Transactions on signal processing, 59(6), 2532–2547.MathSciNetCrossRef Pierobon, M., & Akyildiz, I. F. (2011). Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Transactions on signal processing, 59(6), 2532–2547.MathSciNetCrossRef
27.
go back to reference Rayner, K. J., & Hennessy, E. J. (2013). Extracellular communication via microRNA: Lipid particles have a new message. Journal of Lipid Research, 54, 1174–1181.CrossRef Rayner, K. J., & Hennessy, E. J. (2013). Extracellular communication via microRNA: Lipid particles have a new message. Journal of Lipid Research, 54, 1174–1181.CrossRef
28.
go back to reference Rose, C., & Mian, I.S. (2015). A fundamental framework for molecular communication channels: Timing & payload. In: 2015 IEEE internatinoal conference on communications (ICC 2015) (pp. 1043–1048) Rose, C., & Mian, I.S. (2015). A fundamental framework for molecular communication channels: Timing & payload. In: 2015 IEEE internatinoal conference on communications (ICC 2015) (pp. 1043–1048)
29.
go back to reference Shih, P. J., Lee, C. H., Yeh, P. C., & Chen, K. C. (2013). Channel codes for reliability enhancement in molecular communication. IEEE Journal on Selected Areas in Communications (JSAC), 31(12), 857–867.CrossRef Shih, P. J., Lee, C. H., Yeh, P. C., & Chen, K. C. (2013). Channel codes for reliability enhancement in molecular communication. IEEE Journal on Selected Areas in Communications (JSAC), 31(12), 857–867.CrossRef
30.
go back to reference Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., et al. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology, 19, 751–755.CrossRef Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., et al. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology, 19, 751–755.CrossRef
31.
go back to reference Srinivas, K. V., Adve, R. S., & Eckford, A. W. (2012). Molecular communication in fluid media: The additive inverse gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.MathSciNetCrossRefMATH Srinivas, K. V., Adve, R. S., & Eckford, A. W. (2012). Molecular communication in fluid media: The additive inverse gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.MathSciNetCrossRefMATH
32.
go back to reference Walsh, F., & Balasubramaniam, S. (2013). Reliability and delay analysis of multi-hop virus-based nanonetworks. IEEE Transactions on Nanotechnology, 12(5), 674–684.CrossRef Walsh, F., & Balasubramaniam, S. (2013). Reliability and delay analysis of multi-hop virus-based nanonetworks. IEEE Transactions on Nanotechnology, 12(5), 674–684.CrossRef
33.
go back to reference Wang, X., Higgins, M. D., & Leeson, M. S. (2014). Simulating the performance of SW-ARQ schemes within molecular communications. Simulation Modelling Practice and Theory, 42, 178–188.CrossRef Wang, X., Higgins, M. D., & Leeson, M. S. (2014). Simulating the performance of SW-ARQ schemes within molecular communications. Simulation Modelling Practice and Theory, 42, 178–188.CrossRef
34.
go back to reference Wang, X., Higgins, M. D., & Leeson, M. S. (2015). Relay analysis in molecular communications with time-dependent concentration. IEEE Communications Letters, 19(11), 1977–1980.CrossRef Wang, X., Higgins, M. D., & Leeson, M. S. (2015). Relay analysis in molecular communications with time-dependent concentration. IEEE Communications Letters, 19(11), 1977–1980.CrossRef
Metadata
Title
Design and wet-laboratory implementation of reliable end-to-end molecular communication
Authors
Taro Furubayashi
Yoshihiro Sakatani
Tadashi Nakano
Andrew Eckford
Norikazu Ichihashi
Publication date
06-01-2017
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1435-4

Other articles of this Issue 5/2018

Wireless Networks 5/2018 Go to the issue