Skip to main content
Top
Published in: Acta Mechanica Sinica 3/2020

23-01-2020 | Research Paper

Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester

Authors: Junlei Wang, Linfeng Geng, Shengxi Zhou, Zhien Zhang, Zhihui Lai, Daniil Yurchenko

Published in: Acta Mechanica Sinica | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flow-induced vibrations. A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester. Based on Euler–Bernoulli beam theory and Kirchhoff’s law, the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments. The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester. Numerical results show that comparing with the galloping-based piezoelectric energy harvester, the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex. With the increase of a wind speed, the vibration of the bluff body passes through three branches: intra-well oscillations, chaotic oscillations, and inter-well oscillations. The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s, which is decreased by 33% compared with the galloping-based piezoelectric energy harvester. The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed, which is increased by 35.3%. Compared with the traditional galloping-based piezoelectric energy harvester, the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, X.M., Li, D., Wan, J.F., et al.: A review of industrial wireless networks in the context of Industry 4.0. Wireless Netw. 23, 23–41 (2017) Li, X.M., Li, D., Wan, J.F., et al.: A review of industrial wireless networks in the context of Industry 4.0. Wireless Netw. 23, 23–41 (2017)
2.
go back to reference Azizi, S., Ghodsi, A., Jafari, H., et al.: A conceptual study on the dynamics of a piezoelectric MEMS (micro electro mechanical system) energy harvester. Energy. 96, 495–506 (2016) Azizi, S., Ghodsi, A., Jafari, H., et al.: A conceptual study on the dynamics of a piezoelectric MEMS (micro electro mechanical system) energy harvester. Energy. 96, 495–506 (2016)
3.
go back to reference Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54, 36–42 (2016) Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54, 36–42 (2016)
4.
go back to reference Wang, Z.L., Jiang, T., Xu, L.: Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy. 39, 9–23 (2017) Wang, Z.L., Jiang, T., Xu, L.: Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy. 39, 9–23 (2017)
5.
go back to reference Chen, J., Wang, Z.L.: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule. 1, 480–521 (2017) Chen, J., Wang, Z.L.: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule. 1, 480–521 (2017)
6.
go back to reference Hu, G., Wang, J., Su, Z., et al.: Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Appl. Phys. Lett. 115(7), 073901 (2019) Hu, G., Wang, J., Su, Z., et al.: Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Appl. Phys. Lett. 115(7), 073901 (2019)
7.
go back to reference Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)MathSciNet Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)MathSciNet
8.
go back to reference Zhang, L., Dai, H., Abdelkefi, A., et al.: Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Appl. Energy 254, 113737 (2019) Zhang, L., Dai, H., Abdelkefi, A., et al.: Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Appl. Energy 254, 113737 (2019)
9.
go back to reference Yang, K., Wang, J., Yurchenko, D.: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115(19), 193901 (2019) Yang, K., Wang, J., Yurchenko, D.: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115(19), 193901 (2019)
10.
go back to reference Zhang, Y., Wang, T., Luo, A., et al.: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 212, 362–371 (2018) Zhang, Y., Wang, T., Luo, A., et al.: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 212, 362–371 (2018)
11.
go back to reference Zhang, Y., Wang, T., Zhang, A., et al.: Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Rev. Sci. Instrum. 87, 125001 (2016) Zhang, Y., Wang, T., Zhang, A., et al.: Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Rev. Sci. Instrum. 87, 125001 (2016)
12.
go back to reference Thomson, G., Yurchenko, D., Val, D.V., et al.: Predicting energy output of a stochastic nonlinear dielectric elastomer generator. Energy Convers. Manag. 196, 1445–1452 (2019) Thomson, G., Yurchenko, D., Val, D.V., et al.: Predicting energy output of a stochastic nonlinear dielectric elastomer generator. Energy Convers. Manag. 196, 1445–1452 (2019)
13.
go back to reference Thomson, G., Lai, Z., Val, D.V., et al.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019) Thomson, G., Lai, Z., Val, D.V., et al.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019)
14.
go back to reference Sodano, H.A., Anton, S.R.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28, 113001 (2019) Sodano, H.A., Anton, S.R.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28, 113001 (2019)
15.
go back to reference Zou, Q., Ding, L., Wang, H., et al.: Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder. Ocean Eng. 191, 106505 (2019) Zou, Q., Ding, L., Wang, H., et al.: Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder. Ocean Eng. 191, 106505 (2019)
16.
go back to reference Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013) Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013)
17.
go back to reference Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014) Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014)
18.
go back to reference Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2015) Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2015)
19.
go back to reference Zhao, L., Yang, Y.: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy 212, 233–243 (2018) Zhao, L., Yang, Y.: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy 212, 233–243 (2018)
20.
go back to reference Zhang, L., Dai, H., Abdelkefi, A., et al.: Improving the performance of aeroelastic energy harvesters by an interference cylinder. Appl. Phys. Lett. 111, 073904 (2017) Zhang, L., Dai, H., Abdelkefi, A., et al.: Improving the performance of aeroelastic energy harvesters by an interference cylinder. Appl. Phys. Lett. 111, 073904 (2017)
21.
go back to reference Ma, Y., Luan, Y., Xu, W.: Hydrodynamic features of three equally spaced, long flexible cylinders undergoing flow-induced vibration. Eur. J. Mech. B Fluids. 79, 386–400 (2020)MathSciNetMATH Ma, Y., Luan, Y., Xu, W.: Hydrodynamic features of three equally spaced, long flexible cylinders undergoing flow-induced vibration. Eur. J. Mech. B Fluids. 79, 386–400 (2020)MathSciNetMATH
22.
go back to reference Abdelmoula, H., Abdelkefi, A.: The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications. J. Sound Vib. 370, 191–208 (2016) Abdelmoula, H., Abdelkefi, A.: The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications. J. Sound Vib. 370, 191–208 (2016)
23.
go back to reference Tan, T., Yan, Z., Lei, H.: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits. Smart Mater. Struct. 26, 075007 (2017) Tan, T., Yan, Z., Lei, H.: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits. Smart Mater. Struct. 26, 075007 (2017)
24.
go back to reference Tan, T., Yan, Z.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode. Smart Mater. Struct. 26, 035062 (2017) Tan, T., Yan, Z.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode. Smart Mater. Struct. 26, 035062 (2017)
25.
go back to reference Hu, G., Tse, K., Wei, M., et al.: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments. Appl. Energy 226, 682–689 (2018) Hu, G., Tse, K., Wei, M., et al.: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments. Appl. Energy 226, 682–689 (2018)
26.
go back to reference Wang, J., Zhou, S., Zhang, Z., et al.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage. 181, 645–652 (2019) Wang, J., Zhou, S., Zhang, Z., et al.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage. 181, 645–652 (2019)
27.
go back to reference Yang, X., He, X., Li, J., et al.: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping. Smart Mater, Struct (2019) Yang, X., He, X., Li, J., et al.: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping. Smart Mater, Struct (2019)
28.
go back to reference Arrieta, A., Neild, S., Wagg, D.: Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn. 58, 259 (2009)MATH Arrieta, A., Neild, S., Wagg, D.: Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn. 58, 259 (2009)MATH
29.
go back to reference Arrieta, A., Hagedorn, P., Erturk, A., et al.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010) Arrieta, A., Hagedorn, P., Erturk, A., et al.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010)
30.
go back to reference Mcinnes, C., Gorman, D., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008) Mcinnes, C., Gorman, D., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008)
31.
go back to reference Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011) Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)
32.
go back to reference Stanton, S.C., Mcgehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009) Stanton, S.C., Mcgehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)
33.
go back to reference Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102, 103902 (2013) Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102, 103902 (2013)
34.
go back to reference Green, P.L., Papatheou, E., Sims, N.D.: Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J. Intell. Mater. Syst. Struct. 24, 1494–1505 (2013) Green, P.L., Papatheou, E., Sims, N.D.: Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J. Intell. Mater. Syst. Struct. 24, 1494–1505 (2013)
35.
go back to reference Ferrari, M., Ferrari, V., Guizzetti, M., et al.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator A Phys. 162, 425–431 (2010) Ferrari, M., Ferrari, V., Guizzetti, M., et al.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator A Phys. 162, 425–431 (2010)
36.
go back to reference Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)MathSciNet Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)MathSciNet
37.
go back to reference Zhou, S., Cao, J., Inman, D.J., et al.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016) Zhou, S., Cao, J., Inman, D.J., et al.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016)
38.
go back to reference Haitao, L., Weiyang, Q., Chunbo, L., et al.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25, 015001 (2015) Haitao, L., Weiyang, Q., Chunbo, L., et al.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25, 015001 (2015)
39.
go back to reference Younesian, D., Alam, M.-R.: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017) Younesian, D., Alam, M.-R.: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017)
40.
go back to reference Zhou, Z., Qin, W., Zhu, P., et al.: Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Appl. Phys. Lett. 114, 243902 (2019) Zhou, Z., Qin, W., Zhu, P., et al.: Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Appl. Phys. Lett. 114, 243902 (2019)
41.
go back to reference Bibo, A., Alhadidi, A.H., Daqaq, M.F.: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters. J. Appl. Phys. 117, 045103 (2015) Bibo, A., Alhadidi, A.H., Daqaq, M.F.: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters. J. Appl. Phys. 117, 045103 (2015)
42.
go back to reference Zhang, L., Abdelkefi, A., Dai, H., et al.: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 408, 210–219 (2017) Zhang, L., Abdelkefi, A., Dai, H., et al.: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 408, 210–219 (2017)
43.
go back to reference Wang, J., Tang, L., Zhao, L., et al.: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 172, 1066–1078 (2019) Wang, J., Tang, L., Zhao, L., et al.: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 172, 1066–1078 (2019)
44.
go back to reference Zhao, L., Tang, L., Yang, Y.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22, 125003 (2013) Zhao, L., Tang, L., Yang, Y.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22, 125003 (2013)
45.
go back to reference Nemes, A., Zhao, J., Jacono, D.L., et al.: The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 710, 102–130 (2012)MATH Nemes, A., Zhao, J., Jacono, D.L., et al.: The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 710, 102–130 (2012)MATH
46.
go back to reference Zhou, S., Cao, J., Inman, D.J., et al.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014) Zhou, S., Cao, J., Inman, D.J., et al.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)
47.
go back to reference Harne, R.L., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013) Harne, R.L., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)
48.
go back to reference Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2014) Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2014)
49.
go back to reference Tabesh, A., Fréchette, L.G.: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester. Proc. Power MEMS 2009, 368–371 (2009) Tabesh, A., Fréchette, L.G.: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester. Proc. Power MEMS 2009, 368–371 (2009)
Metadata
Title
Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester
Authors
Junlei Wang
Linfeng Geng
Shengxi Zhou
Zhien Zhang
Zhihui Lai
Daniil Yurchenko
Publication date
23-01-2020
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 3/2020
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00928-5

Other articles of this Issue 3/2020

Acta Mechanica Sinica 3/2020 Go to the issue

Premium Partners