Skip to main content
Top
Published in: Microsystem Technologies 6/2021

23-11-2020 | Technical Paper

Design of a robust controller for a rotary motion control system: disturbance compensation approach

Authors: Ho Seong Lee, Seonghyun Ryu

Published in: Microsystem Technologies | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a design of a robust controller for a rotary motion control system that includes a PID controller, a disturbance observer, and a friction compensator. Friction force versus angular velocity has been measured, and viscous, Coulomb friction and stiction components have been identified. With nominal PID (proportional- integral-derivative) controller, we have observed adverse effects due to friction such as excessive steady-state errors, oscillations, and limit-cycles. By adding a friction model as an augmented nonlinear dynamics of a plant, we are able to conduct a simulation study of a motion control system that matches very well with experimental results. The disturbance observer (DOB) based on simple and effective robust control theory has been implemented to make the rotary motion control system “robust” against inertia/load variations, external torque disturbances, and some of friction forces. Further performance enhancement of the DOB-based robust motion control system has been achieved by adding the friction compensator and experimentally verified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Al-Bender F, Lampaert V, Swevers J (2005) The generalized maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans Autom Control 50(11):1883–1887MathSciNetCrossRef Al-Bender F, Lampaert V, Swevers J (2005) The generalized maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans Autom Control 50(11):1883–1887MathSciNetCrossRef
go back to reference Armstrong-Helouvry B, Dupont P, Canudas de Wit C (1994) A survey of model, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138CrossRef Armstrong-Helouvry B, Dupont P, Canudas de Wit C (1994) A survey of model, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138CrossRef
go back to reference Canudas de Wit C, Olsson H, Astrom KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40(3):419–425MathSciNetCrossRef Canudas de Wit C, Olsson H, Astrom KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40(3):419–425MathSciNetCrossRef
go back to reference Chen WH (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9(4):706–710CrossRef Chen WH (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9(4):706–710CrossRef
go back to reference Cho K, Kim J, Choi SB, Oh S (2015) A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM. IEEE/ASME Trans Mechatron 20(5):2158–2171CrossRef Cho K, Kim J, Choi SB, Oh S (2015) A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM. IEEE/ASME Trans Mechatron 20(5):2158–2171CrossRef
go back to reference Doyle JC, Francis BA, Tannenbaum AR (1992) Feedback Control Theory, Macmillan PUblishing Company, New York Doyle JC, Francis BA, Tannenbaum AR (1992) Feedback Control Theory, Macmillan PUblishing Company, New York
go back to reference Dupont PE, Dunlap EP (1995) Friction modeling and PD compensation at very low velocities. ASME J Dyn Syst Meas Control 117:8–14CrossRef Dupont PE, Dunlap EP (1995) Friction modeling and PD compensation at very low velocities. ASME J Dyn Syst Meas Control 117:8–14CrossRef
go back to reference Gong JQ, Guo L, Lee HS, Yao B (2002) Modeling and cancellation of pivot nonlinearity in hard disk drive. IEEE Trans Magn 38(5):3560–3565CrossRef Gong JQ, Guo L, Lee HS, Yao B (2002) Modeling and cancellation of pivot nonlinearity in hard disk drive. IEEE Trans Magn 38(5):3560–3565CrossRef
go back to reference Itagaki H, Tsutsumi M (2013) Control system design of a linear motor feed drive system using virtual friction. Precis Eng 38(2):237–248CrossRef Itagaki H, Tsutsumi M (2013) Control system design of a linear motor feed drive system using virtual friction. Precis Eng 38(2):237–248CrossRef
go back to reference Lee HS (2001) Controller optimization for minimum position error signals of hard disk drives. IEEE Trans Industr Electron 48(5):945–950CrossRef Lee HS (2001) Controller optimization for minimum position error signals of hard disk drives. IEEE Trans Industr Electron 48(5):945–950CrossRef
go back to reference Lee HS, Tomizuka M (1996) Robust motion controller design for high-accuracy positioning systems. IEEE Trans Industr Electron 43(1):48–55CrossRef Lee HS, Tomizuka M (1996) Robust motion controller design for high-accuracy positioning systems. IEEE Trans Industr Electron 43(1):48–55CrossRef
go back to reference Marton L, Lantos B (2007) Modeling, identification, and compensation of stick-slip friction. IEEE Trans Industr Electron 54(1):511–521CrossRef Marton L, Lantos B (2007) Modeling, identification, and compensation of stick-slip friction. IEEE Trans Industr Electron 54(1):511–521CrossRef
go back to reference Ohnishi K, Shibata M, Murakami T (1996) Motion control for advanced mechatronics. IEEE/ASME Trans Mechatron 1(1):56–67CrossRef Ohnishi K, Shibata M, Murakami T (1996) Motion control for advanced mechatronics. IEEE/ASME Trans Mechatron 1(1):56–67CrossRef
go back to reference Ryoo JR, Doh TY, Chung MJ (2004) Robust disturbance observer for the track-following control system of an optical disk drive. Control Eng Pract 12(5):577–585CrossRef Ryoo JR, Doh TY, Chung MJ (2004) Robust disturbance observer for the track-following control system of an optical disk drive. Control Eng Pract 12(5):577–585CrossRef
go back to reference Sariyildiz E, Ohnishi K (2015) Stability and robustness of disturbance-observer-based motion control systems. IEEE Trans Industr Electron 62(1):414–422CrossRef Sariyildiz E, Ohnishi K (2015) Stability and robustness of disturbance-observer-based motion control systems. IEEE Trans Industr Electron 62(1):414–422CrossRef
go back to reference Shim DH, Lee HS, Guo L (2004) Mixed-objective optimization of track-following controllers using linear matrix inequalities. IEEE/ASME Trans Mechatron 9(4):636–643CrossRef Shim DH, Lee HS, Guo L (2004) Mixed-objective optimization of track-following controllers using linear matrix inequalities. IEEE/ASME Trans Mechatron 9(4):636–643CrossRef
go back to reference Teeter JT, Chow M, Brickley JJ Jr (1996) A novel fuzzy friction compensation approach to improve the performance of a DC motor control system. IEEE Trans Industr Electron 43(1):113–120CrossRef Teeter JT, Chow M, Brickley JJ Jr (1996) A novel fuzzy friction compensation approach to improve the performance of a DC motor control system. IEEE Trans Industr Electron 43(1):113–120CrossRef
go back to reference Tesfaye A, Lee HS, Tomizuka M (2000) A sensitivity optimization approach to design of a disturbance observer in digital motion control systems. IEEE/ASME Trans Mechatron 5(1):32–38CrossRef Tesfaye A, Lee HS, Tomizuka M (2000) A sensitivity optimization approach to design of a disturbance observer in digital motion control systems. IEEE/ASME Trans Mechatron 5(1):32–38CrossRef
go back to reference Vidyasagar M (1985) Control system synthesis: a factorization approach. MIT Press, CambridgeMATH Vidyasagar M (1985) Control system synthesis: a factorization approach. MIT Press, CambridgeMATH
go back to reference Wang Y, Wang D, Chai T (2011) Extraction and adaptation of fuzzy rules for friction modeling and control compensation. IEEE Trans Fuzzy Syst 19(4):682–693CrossRef Wang Y, Wang D, Chai T (2011) Extraction and adaptation of fuzzy rules for friction modeling and control compensation. IEEE Trans Fuzzy Syst 19(4):682–693CrossRef
go back to reference White M, Tomizuka M, Smith C (2000) Improved track following in magnetic disk drives using a disturbance observer. IEEE/ASME Trans Mech 5(1):3–11CrossRef White M, Tomizuka M, Smith C (2000) Improved track following in magnetic disk drives using a disturbance observer. IEEE/ASME Trans Mech 5(1):3–11CrossRef
go back to reference Yang ZJ, Fukushima Y, Qin P (2012) Decentralized adaptive robust control of robot manipulators using disturbance observers. IEEE Trans Control Syst Technol 20(5):1357–1365CrossRef Yang ZJ, Fukushima Y, Qin P (2012) Decentralized adaptive robust control of robot manipulators using disturbance observers. IEEE Trans Control Syst Technol 20(5):1357–1365CrossRef
Metadata
Title
Design of a robust controller for a rotary motion control system: disturbance compensation approach
Authors
Ho Seong Lee
Seonghyun Ryu
Publication date
23-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 6/2021
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-020-05104-0

Other articles of this Issue 6/2021

Microsystem Technologies 6/2021 Go to the issue