Skip to main content
Top
Published in: Adsorption 6/2013

01-12-2013

Design of high pressure differential volumetric adsorption measurements with increased accuracy

Authors: Sarmishtha Sircar, Cheng-Yu Wang, Angela D. Lueking

Published in: Adsorption | Issue 6/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High pressure adsorption measurements for light gases on volumetric equipment are prone to error. Differential units reduce the sensitivity to leakage, gas compressibility, and temperature gradients, but remain highly sensitive to volume uncertainties, the calibration of which is difficult in the presence of low-density, microporous samples. Calibration error can be reduced using a high initial pressure differential and large calibration volume; however, systematic error is prevalent in the literature. Using both analytical and multivariate error analysis, we demonstrate that calibration of the differential unit with the differential pressure transducer significantly decreases volume sensitivity. We show that hydrogen adsorption to GX-31 superactivated carbon at 298 K and 80 bar can be measured with a 7 % error in measurement (i.e. within 0.05 wt% for a 100 mg sample), even when experimental volume calibration is determined only within ~1 %. This represents approximately a 2–7 fold increase in sensitivity relative to previous reports using differential measurements. We also provide a framework for optimizing the design of a volumetric adsorption unit. For virtually any system design, the improved differential methods offer a significant increase in precision relative to the conventional volumetric measurement (from 10- to over 250-fold, depending on the precision of the pressure transducer). This improvement further enhances advantages of the differential unit, in addition to advantages that arise for treating gas compressibility and temperature fluctuations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Blackburn, J.L., Parilla, P.A., Gennett, T., Hurst, K.E., Dillon, A.C., Heben, M.J. Measurement of the reversible hydrogen storage capacity of milligram Ti–6Al–4 V alloy samples with temperature programmed desorption and volumetric techniques. J. Alloy. Compd. 454(1–2), 483–490 (2008) doi:http://dx.doi.org/10.1016/j.jallcom.2007.01.006 Blackburn, J.L., Parilla, P.A., Gennett, T., Hurst, K.E., Dillon, A.C., Heben, M.J. Measurement of the reversible hydrogen storage capacity of milligram Ti–6Al–4 V alloy samples with temperature programmed desorption and volumetric techniques. J. Alloy. Compd. 454(1–2), 483–490 (2008) doi:http://​dx.​doi.​org/​10.​1016/​j.​jallcom.​2007.​01.​006
go back to reference Browning, D.J., Gerrard, M.L., Lakeman, J.B., Mellor, I.M., Mortimer, R.J., Turpin, M.C.: Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism. Nano Lett. 2(3), 201–205 (2002). doi:10.1021/nl015576g CrossRef Browning, D.J., Gerrard, M.L., Lakeman, J.B., Mellor, I.M., Mortimer, R.J., Turpin, M.C.: Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism. Nano Lett. 2(3), 201–205 (2002). doi:10.​1021/​nl015576g CrossRef
go back to reference Curl, R.L., Ramanathan, S., Way, S. D.: UNCANAL. In: Uncertainty Analysis of a Single Equation; Macro written for Mathematica 4.0 ed. University of Michigan, Department of Chemical Engineering (1999) Curl, R.L., Ramanathan, S., Way, S. D.: UNCANAL. In: Uncertainty Analysis of a Single Equation; Macro written for Mathematica 4.0 ed. University of Michigan, Department of Chemical Engineering (1999)
go back to reference Elliott, J.R., Lira, C.T.: Introductory Chemical Engineering Thermodynamics. Prentice Hall (2012) Elliott, J.R., Lira, C.T.: Introductory Chemical Engineering Thermodynamics. Prentice Hall (2012)
go back to reference Furukawa, H., Miller, M.A., Yaghi, O.M.: Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 17(30), 3197–3204 (2007). doi:10.1039/b703608f CrossRef Furukawa, H., Miller, M.A., Yaghi, O.M.: Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 17(30), 3197–3204 (2007). doi:10.​1039/​b703608f CrossRef
go back to reference Jain, P., Fonseca, D.A., Schaible, E., Lueking, A.D.: Hydrogen uptake of platinum-doped graphite nanoribers and stochastic analysis of hydrogen spillover. J. Phys. Chem. C 111(4), 1788–1800 (2007). doi:10.1021/jp0654922 CrossRef Jain, P., Fonseca, D.A., Schaible, E., Lueking, A.D.: Hydrogen uptake of platinum-doped graphite nanoribers and stochastic analysis of hydrogen spillover. J. Phys. Chem. C 111(4), 1788–1800 (2007). doi:10.​1021/​jp0654922 CrossRef
go back to reference Kiyobayashi, T., Takeshita, H.T., Tanaka, H., Takeichi, N., Zuttel, A., Schlapbach, L., Kuriyama, N.: Hydrogen adsorption in carbonaceous materials—how to determine the storage capacity accurately. J. Alloy. Compd. 330, 666–669 (2002). doi:10.1016/s0925-8388(01)01436-0 CrossRef Kiyobayashi, T., Takeshita, H.T., Tanaka, H., Takeichi, N., Zuttel, A., Schlapbach, L., Kuriyama, N.: Hydrogen adsorption in carbonaceous materials—how to determine the storage capacity accurately. J. Alloy. Compd. 330, 666–669 (2002). doi:10.​1016/​s0925-8388(01)01436-0 CrossRef
go back to reference Lachawiec, A.J., DiRaimondo, T.R., Yang, R.T.: A robust volumetric apparatus and method for measuring high pressure hydrogen storage properties of nanostructured materials. Rev. Sci. Instrum. 79(6) (2008). doi:06390610.1063/1.2937820 Lachawiec, A.J., DiRaimondo, T.R., Yang, R.T.: A robust volumetric apparatus and method for measuring high pressure hydrogen storage properties of nanostructured materials. Rev. Sci. Instrum. 79(6) (2008). doi:06390610.​1063/​1.​2937820
go back to reference Langmuir, I.: A theory of adsorption. Phys. Rev. 6(1), 79–80 (1915) Langmuir, I.: A theory of adsorption. Phys. Rev. 6(1), 79–80 (1915)
go back to reference Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38(3). (2009) doi:10.1063/1.3160306 Leachman, J.W., Jacobsen, R.T., Penoncello, S.G., Lemmon, E.W.: Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data 38(3). (2009) doi:10.​1063/​1.​3160306
go back to reference Li, Q.: Hydrogen Storage in Carbon-Supported Catalysts via Hydrogen Spillover, PhD Thesis. Pennsylvania State University (2012) Li, Q.: Hydrogen Storage in Carbon-Supported Catalysts via Hydrogen Spillover, PhD Thesis. Pennsylvania State University (2012)
go back to reference Maggs, F.A.P., Schwabe, P.H., Williams, J.H.: Adsorption of helium on carbons-influence on measurement of density. Nature 186(4729), 956–958 (1960). doi:10.1038/186956b0 CrossRef Maggs, F.A.P., Schwabe, P.H., Williams, J.H.: Adsorption of helium on carbons-influence on measurement of density. Nature 186(4729), 956–958 (1960). doi:10.​1038/​186956b0 CrossRef
go back to reference Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13(3), 539–544 (1997). doi:10.1021/la950969e CrossRef Malbrunot, P., Vidal, D., Vermesse, J., Chahine, R., Bose, T.K.: Adsorbent helium density measurement and its effect on adsorption isotherms at high pressure. Langmuir 13(3), 539–544 (1997). doi:10.​1021/​la950969e CrossRef
go back to reference Mohammad, S., Fitzgerald, J., Robinson, R.L., Gasem, K.A.M.: Experimental uncertainties in volumetric methods for measuring equilibrium adsorption. Energy Fuels 23(5), 2810–2820 (2009). doi:10.1021/ef8011257 CrossRef Mohammad, S., Fitzgerald, J., Robinson, R.L., Gasem, K.A.M.: Experimental uncertainties in volumetric methods for measuring equilibrium adsorption. Energy Fuels 23(5), 2810–2820 (2009). doi:10.​1021/​ef8011257 CrossRef
go back to reference Parambhath, V.B., Nagar, R., Ramaprabhu, S.: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28(20), 7826–7833 (2012). doi:10.1021/la301232r CrossRef Parambhath, V.B., Nagar, R., Ramaprabhu, S.: Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28(20), 7826–7833 (2012). doi:10.​1021/​la301232r CrossRef
go back to reference Parambhath, V.B., Nagar, R., Sethupathi, K., Ramaprabhu, S.: Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115(31), 15679–15685 (2011). doi:10.1021/jp202797q CrossRef Parambhath, V.B., Nagar, R., Sethupathi, K., Ramaprabhu, S.: Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. J. Phys. Chem. C 115(31), 15679–15685 (2011). doi:10.​1021/​jp202797q CrossRef
go back to reference Parilla, P.A.: Hydrogen sorbent measurement qualification and characterization. In: DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting 2012, p. 12. National Renewable Energy Technology Laboratory (2012) Parilla, P.A.: Hydrogen sorbent measurement qualification and characterization. In: DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting 2012, p. 12. National Renewable Energy Technology Laboratory (2012)
go back to reference Ramaprabhu, S., Rajalakshmi, N., Weiss, A.: Design and development of hydrogen absorption/desorption high pressure apparatus based on the pressure reduction method. Int. J. Hydrogen Energy 23(9), 797–801 (1998) doi:10.1016/S0360-3199(97)00131-6 Ramaprabhu, S., Rajalakshmi, N., Weiss, A.: Design and development of hydrogen absorption/desorption high pressure apparatus based on the pressure reduction method. Int. J. Hydrogen Energy 23(9), 797–801 (1998) doi:10.​1016/​S0360-3199(97)00131-6
go back to reference Rouquerol, J., Rouquerol, F., Sing, K.S.W.: Adsorption by powders and porous solids. Academic Press (1999) Rouquerol, J., Rouquerol, F., Sing, K.S.W.: Adsorption by powders and porous solids. Academic Press (1999)
go back to reference Rzepka, M., Bauer, E., Reichenauer, G., Schliermann, T., Bernhardt, B., Bohmhammel, K., Henneberg, E., Knoll, U., Maneck, H.E., Braue, W.: Hydrogen storage capacity of catalytically grown carbon nanofibers. J. Phys. Chem. B 109(31), 14979–14989 (2005). doi:10.1021/jp051371a CrossRef Rzepka, M., Bauer, E., Reichenauer, G., Schliermann, T., Bernhardt, B., Bohmhammel, K., Henneberg, E., Knoll, U., Maneck, H.E., Braue, W.: Hydrogen storage capacity of catalytically grown carbon nanofibers. J. Phys. Chem. B 109(31), 14979–14989 (2005). doi:10.​1021/​jp051371a CrossRef
go back to reference Sevilla, M., Fuertes, A.B., Mokaya, R.: High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci. 4(4), 1400–1410 (2011). doi:10.1039/c0ee00347f CrossRef Sevilla, M., Fuertes, A.B., Mokaya, R.: High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci. 4(4), 1400–1410 (2011). doi:10.​1039/​c0ee00347f CrossRef
go back to reference Sieverts, A.Z.: Phys. Chem. Leipzig 129, 60 (1908) Sieverts, A.Z.: Phys. Chem. Leipzig 129, 60 (1908)
go back to reference Sircar: Fundamentals of Adsorption, vol. 7. IK International, Chiba (2002) Sircar: Fundamentals of Adsorption, vol. 7. IK International, Chiba (2002)
go back to reference Springer, C., Major, C.J., Kammerme K: Low pressure adsorption of helium on microporous solids. J. Chem. Eng. Data 14(1), 78–&. (1969) doi:10.1021/je60040a017 Springer, C., Major, C.J., Kammerme K: Low pressure adsorption of helium on microporous solids. J. Chem. Eng. Data 14(1), 78–&. (1969) doi:10.​1021/​je60040a017
go back to reference Stadie, N.P., Purewal, J.J., Ahn, C.C., Fultz, B.: Measurements of hydrogen spillover in platinum doped superactivated carbon. Langmuir 26(19), 15481–15485 (2010). doi:10.1021/la9046758 CrossRef Stadie, N.P., Purewal, J.J., Ahn, C.C., Fultz, B.: Measurements of hydrogen spillover in platinum doped superactivated carbon. Langmuir 26(19), 15481–15485 (2010). doi:10.​1021/​la9046758 CrossRef
go back to reference Stuckert, N.R., Wang, L.F., Yang, R.T.: Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework. Langmuir 26(14), 11963–11971 (2010). doi:10.1021/La101377u CrossRef Stuckert, N.R., Wang, L.F., Yang, R.T.: Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework. Langmuir 26(14), 11963–11971 (2010). doi:10.​1021/​La101377u CrossRef
go back to reference Webb, P.A., Orr, C.: Corporation. Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corporation, MI (1997) Webb, P.A., Orr, C.: Corporation. Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corporation, MI (1997)
go back to reference Zhou, W., Wu, H., Hartman, M.R., Yildirim, T.: Hydrogen and methane adsorption in metal−organic frameworks: a high-pressure volumetric study. J. Phys. Chem. C. 111(44), 16131–16137 (2007). doi:10.1021/jp074889i CrossRef Zhou, W., Wu, H., Hartman, M.R., Yildirim, T.: Hydrogen and methane adsorption in metal−organic frameworks: a high-pressure volumetric study. J. Phys. Chem. C. 111(44), 16131–16137 (2007). doi:10.​1021/​jp074889i CrossRef
go back to reference Zielinski, J.M., Coe, C.G., Nickel, R.J., Romeo, A.M., Cooper, A.C., Pez, G.P.: High pressure sorption isotherms via differential pressure measurements. Adsorpt J. Int. Adsorpt. Soc. 13(1), 1–7. (2007) doi:10.1007/s10450-007-9005-9 Zielinski, J.M., Coe, C.G., Nickel, R.J., Romeo, A.M., Cooper, A.C., Pez, G.P.: High pressure sorption isotherms via differential pressure measurements. Adsorpt J. Int. Adsorpt. Soc. 13(1), 1–7. (2007) doi:10.​1007/​s10450-007-9005-9
Metadata
Title
Design of high pressure differential volumetric adsorption measurements with increased accuracy
Authors
Sarmishtha Sircar
Cheng-Yu Wang
Angela D. Lueking
Publication date
01-12-2013
Publisher
Springer US
Published in
Adsorption / Issue 6/2013
Print ISSN: 0929-5607
Electronic ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-013-9558-8

Other articles of this Issue 6/2013

Adsorption 6/2013 Go to the issue

Premium Partners