Skip to main content
Top

2017 | OriginalPaper | Chapter

Design of Imaginary Spectrum of LTI Systems with Delays to Manipulate Stability Regions

Author : Rifat Sipahi

Published in: Time Delay Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is on the design problem of linear time-invariant (LTI) systems with delays. Our recent studies on the use of algebraic techniques, namely resultant and iterated discriminants operations, in connection with the well-known Rekasius transformation implemented on the system characteristic equation already revealed that it is indeed possible to compute the exact range of the imaginary spectrum of such systems. This know-how, which is the key toward understanding the stabilty/instability decomposition of the system, is utilized here to craft the imaginary spectrum of LTI systems with multiple delays, specifically with the aim to manipulate stability regions in a systematic manner in the delay parameter space.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Here we assume that the system indeed exhibits crossings. Otherwise \(\varOmega \) is an empty set, and the system is delay-independent stable, or unstable.
 
2
These observations lead to a general proof that, except for possibly some special points in \(T_v\), for a feasible \(s=j\omega \) solution to exist the hypersurfaces formed by \(R_{21}\) and the numerator of \(R_1\) do not intersect in the L-dimensional \(T_v\) parameter space [27].
 
3
Notice that sweeping the frequency \(\omega \) is not equivalent to sweeping \(T_v\), \(\omega \tau _v\), or \(\omega T_v\) due to the intricate nonlinear relationships between (10) and (11), see also [5, 26].
 
4
The number of positive real roots of polynomials can be assessed following algebraic tools. If this number is zero and \(\omega \ne 0\), then \(\varOmega \) is an empty set hence the system maintains its stable/unstable characteristic irrespective of delays [13]. See also [5, 7, 17] for multiple delay treatments.
 
Literature
1.
go back to reference Abdallah, C.T., Dorato, P., Benites-Read, J., Byrne, R.: Delayed positive feedback can stabilize oscillatory systems. Proc. Am. Control Conf. (1993) Abdallah, C.T., Dorato, P., Benites-Read, J., Byrne, R.: Delayed positive feedback can stabilize oscillatory systems. Proc. Am. Control Conf. (1993)
2.
go back to reference Chen, J., Latchman, H.A.: Frequency sweeping tests for asymptotic stability independent of delay. IEEE Trans. Autom. Control 40(9), 1640–1645 (1995)CrossRefMATH Chen, J., Latchman, H.A.: Frequency sweeping tests for asymptotic stability independent of delay. IEEE Trans. Autom. Control 40(9), 1640–1645 (1995)CrossRefMATH
4.
go back to reference Datko, R.: A Procedure for determination of the exponential stability of certain differential-difference equations. Q. Appl. Math. 36, 279–292 (1978)MathSciNetCrossRefMATH Datko, R.: A Procedure for determination of the exponential stability of certain differential-difference equations. Q. Appl. Math. 36, 279–292 (1978)MathSciNetCrossRefMATH
5.
go back to reference Delice, I.I.: Stability analysis of multiple time-delay systems with applications to supply chain management. Ph.D. Dissertation, Northeastern University, Boston, MA (2011) Delice, I.I.: Stability analysis of multiple time-delay systems with applications to supply chain management. Ph.D. Dissertation, Northeastern University, Boston, MA (2011)
6.
go back to reference Delice, I.I., Sipahi, R.: Exact upper and lower bounds of crossing frequency set and delay independent stability test for multiple time delayed systems. In: 8th IFAC Workshop on Time-Delay Systems, Sinaia, Romania (2009) Delice, I.I., Sipahi, R.: Exact upper and lower bounds of crossing frequency set and delay independent stability test for multiple time delayed systems. In: 8th IFAC Workshop on Time-Delay Systems, Sinaia, Romania (2009)
7.
go back to reference Delice, I.I., Sipahi, R.: Delay-independent stability test for systems with multiple time-delays. IEEE Trans. Autom. Control 57(4), 963–972 (2012) Delice, I.I., Sipahi, R.: Delay-independent stability test for systems with multiple time-delays. IEEE Trans. Autom. Control 57(4), 963–972 (2012)
8.
go back to reference Gu, K., Naghnaeian, M.: On stability crossing set for general systems with three delays—part 1 and part 2. In: IFAC Workshop on Time Delay Systems, Sinaia, Romania (2009) Gu, K., Naghnaeian, M.: On stability crossing set for general systems with three delays—part 1 and part 2. In: IFAC Workshop on Time Delay Systems, Sinaia, Romania (2009)
9.
go back to reference Gu, K., Naghnaeian, M.: Stability crossing set for systems with three delays. IEEE Trans. Autom. Control 56(1), 11–26 (2011) Gu, K., Naghnaeian, M.: Stability crossing set for systems with three delays. IEEE Trans. Autom. Control 56(1), 11–26 (2011)
10.
go back to reference Gu, K., Niculescu, S.-I., Chen, J.: On Stability of crossing curves for general systems with two delays. J. Math. Anal. Appl. 311, 231–253 (2005)MathSciNetCrossRefMATH Gu, K., Niculescu, S.-I., Chen, J.: On Stability of crossing curves for general systems with two delays. J. Math. Anal. Appl. 311, 231–253 (2005)MathSciNetCrossRefMATH
11.
go back to reference Lee, M.S., Hsu, C.S.: On the \(\tau \)-decomposition method of stability analysis for retarded dynamical systems. SIAM J. Control 7, 242–259 (1969)MathSciNetCrossRefMATH Lee, M.S., Hsu, C.S.: On the \(\tau \)-decomposition method of stability analysis for retarded dynamical systems. SIAM J. Control 7, 242–259 (1969)MathSciNetCrossRefMATH
12.
go back to reference Michiels, W., Niculescu, S.-I.: Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM (2007) Michiels, W., Niculescu, S.-I.: Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM (2007)
13.
go back to reference Michiels, W., Niculescu, S.-I.: Characterization of delay-independent stability and delay-interference phenomena. SIAM J. Control Optim. 45, 2138–2155 (2007)MathSciNetCrossRefMATH Michiels, W., Niculescu, S.-I.: Characterization of delay-independent stability and delay-interference phenomena. SIAM J. Control Optim. 45, 2138–2155 (2007)MathSciNetCrossRefMATH
14.
go back to reference Naghnaeian, M., Gu, K.: Stability crossing set for systems with two scalar-delay channels. Automatica 49(7), 2098–2106 (2013)MathSciNetCrossRef Naghnaeian, M., Gu, K.: Stability crossing set for systems with two scalar-delay channels. Automatica 49(7), 2098–2106 (2013)MathSciNetCrossRef
15.
go back to reference Neimark, J.: \(D\)-subdivisions and spaces of quasi-polynomials. Prikl. Mat. Meh. 13, 349–380 (1949) Neimark, J.: \(D\)-subdivisions and spaces of quasi-polynomials. Prikl. Mat. Meh. 13, 349–380 (1949)
16.
go back to reference Nia, P.M., Sipahi, R.: Controller design for delay-independent stability of linear time-invariant vibration systems with multiple delays. J. Sound Vib. 332(14), 3589–3604 (2013)CrossRef Nia, P.M., Sipahi, R.: Controller design for delay-independent stability of linear time-invariant vibration systems with multiple delays. J. Sound Vib. 332(14), 3589–3604 (2013)CrossRef
17.
go back to reference Nia, P.M.: Control-parameter-space classification for delay-independent-stability of linear time-invariant time-delay systems; theory and experiments. Ph.D. Dissertation, Northeastern University, Boston, MA (2014) Nia, P.M.: Control-parameter-space classification for delay-independent-stability of linear time-invariant time-delay systems; theory and experiments. Ph.D. Dissertation, Northeastern University, Boston, MA (2014)
18.
go back to reference Niculescu, S.-I.: Delay Effects on Stability: A Robust Control Approach. Springer, Heidelberg (2001)MATH Niculescu, S.-I.: Delay Effects on Stability: A Robust Control Approach. Springer, Heidelberg (2001)MATH
19.
go back to reference Niculescu, S.-I., Michiels, W.: Stabilizing a chain of integrators using multiple delays. IEEE Trans. Autom. Control 49(5), 802–807 (2004) Niculescu, S.-I., Michiels, W.: Stabilizing a chain of integrators using multiple delays. IEEE Trans. Autom. Control 49(5), 802–807 (2004)
20.
go back to reference Olgac, N., Sipahi, R.: An exact method for the stability analysis of time-delayed LTI systems. IEEE Trans. Autom. Control 47, 793–797 (2002)CrossRef Olgac, N., Sipahi, R.: An exact method for the stability analysis of time-delayed LTI systems. IEEE Trans. Autom. Control 47, 793–797 (2002)CrossRef
21.
go back to reference Olgac, N., Sipahi, R., Ergenc, A.F.: Delay scheduling, an unconventional use of time delay for trajectory tracking. Mechatronics 17, 199–206 (2007)CrossRef Olgac, N., Sipahi, R., Ergenc, A.F.: Delay scheduling, an unconventional use of time delay for trajectory tracking. Mechatronics 17, 199–206 (2007)CrossRef
22.
go back to reference Popov, E.P.: The Dynamics of Automatic Control Systems. Pergamon Press, London (1962) Popov, E.P.: The Dynamics of Automatic Control Systems. Pergamon Press, London (1962)
23.
go back to reference Rekasius, Z.V.: A stability test for systems with delays. In: Proceedings of 1980 Joint Automatic Control Conference, San Francisco, CA, article no. TP9-A (1980) Rekasius, Z.V.: A stability test for systems with delays. In: Proceedings of 1980 Joint Automatic Control Conference, San Francisco, CA, article no. TP9-A (1980)
24.
go back to reference Sipahi, R.: Cluster Treatment of Characteristic Roots, CTCR, a unique methodology for the complete stability robustness analysis of linear time invariant multiple time delay systems against delay uncertainties. Ph.D. Dissertation, University of Connecticut, Storrs, CT (2005) Sipahi, R.: Cluster Treatment of Characteristic Roots, CTCR, a unique methodology for the complete stability robustness analysis of linear time invariant multiple time delay systems against delay uncertainties. Ph.D. Dissertation, University of Connecticut, Storrs, CT (2005)
25.
go back to reference Sipahi, R., Delice, I.I.: Extraction of 3D stability switching hypersurfaces of a time delay system with multiple fixed delays. Automatica 45, 1449–1454 (2009)MathSciNetCrossRefMATH Sipahi, R., Delice, I.I.: Extraction of 3D stability switching hypersurfaces of a time delay system with multiple fixed delays. Automatica 45, 1449–1454 (2009)MathSciNetCrossRefMATH
26.
go back to reference Sipahi, R., Delice, I.I.: Advanced clustering with frequency sweeping methodology for the stability analysis of multiple time-delay systems. IEEE Trans. Autom. Control 56(2), 467–472 (2011) Sipahi, R., Delice, I.I.: Advanced clustering with frequency sweeping methodology for the stability analysis of multiple time-delay systems. IEEE Trans. Autom. Control 56(2), 467–472 (2011)
27.
go back to reference Sipahi, R., Delice, I.I.: On some features of core hypersurfaces related to stability switching of LTI systems with multiple delays. IMA J. Math. Control Inf. 31(2), 257–272 (2013) Sipahi, R., Delice, I.I.: On some features of core hypersurfaces related to stability switching of LTI systems with multiple delays. IMA J. Math. Control Inf. 31(2), 257–272 (2013)
28.
go back to reference Sipahi, R., Olgac, N.: Stability analysis of multiple time delayed systems using the direct method. In: ASME-IMECE Conference, Washington DC (2003) Sipahi, R., Olgac, N.: Stability analysis of multiple time delayed systems using the direct method. In: ASME-IMECE Conference, Washington DC (2003)
29.
go back to reference Sipahi, R., Olgac, N.: Complete stability map of third order LTI multiple time delay systems. Automatica 41, 1413–1422 (2005)CrossRefMATH Sipahi, R., Olgac, N.: Complete stability map of third order LTI multiple time delay systems. Automatica 41, 1413–1422 (2005)CrossRefMATH
30.
go back to reference Sipahi, R., Olgac, N.: Stability robustness of retarded LTI systems with single delay and exhaustive determination of their imaginary spectra. SIAM J. Control Optim. 45, 1680–1696 (2006)MathSciNetCrossRefMATH Sipahi, R., Olgac, N.: Stability robustness of retarded LTI systems with single delay and exhaustive determination of their imaginary spectra. SIAM J. Control Optim. 45, 1680–1696 (2006)MathSciNetCrossRefMATH
31.
go back to reference Sipahi, R., Niculescu, S.-I., Abdallah, C.T., Michiels, W., Gu, K.: Stability and stabilization of systems with time delay, limitations and opportunities. IEEE Control Syst. Mag. 31(1), 38–65 (2011)MathSciNetCrossRef Sipahi, R., Niculescu, S.-I., Abdallah, C.T., Michiels, W., Gu, K.: Stability and stabilization of systems with time delay, limitations and opportunities. IEEE Control Syst. Mag. 31(1), 38–65 (2011)MathSciNetCrossRef
32.
go back to reference Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Function. Longman Scientific, UK (1989)MATH Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Function. Longman Scientific, UK (1989)MATH
33.
go back to reference Uspensky, J.V.: Theory of Equations. McGraw Hill, US (1948) Uspensky, J.V.: Theory of Equations. McGraw Hill, US (1948)
Metadata
Title
Design of Imaginary Spectrum of LTI Systems with Delays to Manipulate Stability Regions
Author
Rifat Sipahi
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53426-8_9

Premium Partners