Skip to main content
Top

2021 | OriginalPaper | Chapter

Design of Nanoscale Square Ring Resonator Band-Pass Filter Using Metal–Insulator–Metal

Authors : Surendra Kumar Bitra, M. Sridhar

Published in: Microelectronics, Electromagnetics and Telecommunications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, metal–insulator–metal (MIM)-based single-band plasmonic band-pass filters (BPF) design and analysis is presented. The basic design comprises a square ring resonator (SRR) which is coupled using straight waveguide with gap. The straight waveguide SRR is responsible for a single-band-operating wavelength (1355 nm, i.e., 221.24 THz). Design and simulations are carried out using finite-difference time-domain (FDTD)-based solver embedded in the Computer Simulation Technology (CST) Microwave Studio suite. The proposed filters are used for plasmonic single-band band-pass filter (BPF) applications in photonic integrated circuits (PICs).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science (80-.).311:189–193 Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science (80-.).311:189–193
2.
go back to reference Atwater HA (2007) TiN Harsha 13 the promise of plasmonics 56–63 Atwater HA (2007) TiN Harsha 13 the promise of plasmonics 56–63
3.
go back to reference Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature. 424:824–830 Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature. 424:824–830
4.
go back to reference Wassel HMG et al (2012) Opportunities and challenges of using plasmonic components in nanophotonic architectures. IEEE J Emerg Sel Top Circ Syst 2:154–168 Wassel HMG et al (2012) Opportunities and challenges of using plasmonic components in nanophotonic architectures. IEEE J Emerg Sel Top Circ Syst 2:154–168
5.
go back to reference He XY, Wang QJ, Yu SF (2012) Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics 7:571–577CrossRef He XY, Wang QJ, Yu SF (2012) Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics 7:571–577CrossRef
6.
go back to reference Okamoto K et al (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601–605CrossRef Okamoto K et al (2004) Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater 3:601–605CrossRef
7.
go back to reference Reineck P et al (2012) A solid-state plasmonic solar cell via metal nanoparticle self-assembly. Adv Mater 24:4750–4755CrossRef Reineck P et al (2012) A solid-state plasmonic solar cell via metal nanoparticle self-assembly. Adv Mater 24:4750–4755CrossRef
8.
go back to reference Pile DFP, Gramotnev DK (2005) Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Opt Lett 30:1186CrossRef Pile DFP, Gramotnev DK (2005) Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Opt Lett 30:1186CrossRef
9.
go back to reference Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B Condens Matter Mater Phys 72:1–11 Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B Condens Matter Mater Phys 72:1–11
10.
go back to reference Pile DFP et al (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87:1–3 Pile DFP et al (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87:1–3
11.
go back to reference Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:2–5CrossRef Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:2–5CrossRef
12.
go back to reference Yun B, Hu G, Cui Y (2010) Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. J Phys D Appl Phys 43 Yun B, Hu G, Cui Y (2010) Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide. J Phys D Appl Phys 43
13.
go back to reference Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal 14:847–848 Xiao S, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal 14:847–848
14.
go back to reference Wang T-B et al (2003) Surface plasmons; (140.4780) optical resonators; (130.7408) wavelength filter. Nature 424:824–830 Wang T-B et al (2003) Surface plasmons; (140.4780) optical resonators; (130.7408) wavelength filter. Nature 424:824–830
15.
go back to reference Lin X-S, Huang X-G (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874CrossRef Lin X-S, Huang X-G (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874CrossRef
16.
go back to reference Maier SA (2007) TiN Modulator 7 Plasmonics: fundamentals and applications Maier SA (2007) TiN Modulator 7 Plasmonics: fundamentals and applications
Metadata
Title
Design of Nanoscale Square Ring Resonator Band-Pass Filter Using Metal–Insulator–Metal
Authors
Surendra Kumar Bitra
M. Sridhar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-3828-5_68