Skip to main content
Top

2019 | OriginalPaper | Chapter

5. Design of Porous, Core-Shell, and Hollow Nanofibers

Authors : Maryam Yousefzadeh, Farzaneh Ghasemkhah

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrospinning can be used to prepare various organic or inorganic nanofibrous structures. These structures could be related to the nanofibers arrangement relative to each other, as random, aligned, 3D, and yarn, or they could be related to the single nanofiber structure and morphology, or both. In the electrospinning process, nanofibers could be produced to have surface or internal porous structure. Considering the type of material which is used, different methods are introduced to get the desired porosity in nanofibers such as chemical etching, blend solution, effect of humidity, and different post-treatment methods. Also, by using different methods, it is possible to produce core-shell nanofibers or hollow ones. For fabrication of the core-shell nanofibers, one method is to use the special coaxial nozzle. However, there are other techniques to get core-shell nanofibers like emulsion precursor solution, different methods of surface coating, and so on. Based on the diversity of techniques, in this chapter an attempt is made to cover the most usable methods to get the porous, core-shell, and hollow nanofibers and present some applications for each.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yousefzadeh M, Ramakrishna S (2017) Modeling performance of electrospun nanofibers and nanofibrous assembles. In: Ashanti M (ed) Electrospun nanofibers. Woodhwad Publishing, Cambridge, pp 303–337CrossRef Yousefzadeh M, Ramakrishna S (2017) Modeling performance of electrospun nanofibers and nanofibrous assembles. In: Ashanti M (ed) Electrospun nanofibers. Woodhwad Publishing, Cambridge, pp 303–337CrossRef
2.
go back to reference Ramakrishna S, Fujihara K, Teo W-E et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50CrossRef Ramakrishna S, Fujihara K, Teo W-E et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50CrossRef
3.
go back to reference Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications. Wiley, WeinheimCrossRef Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications. Wiley, WeinheimCrossRef
4.
go back to reference Ji L, Lin Z, Medford AJ, Zhang X (2009) Porous carbon nanofibers from electrospun polyacrylonitrile/SiO 2 composites as an energy storage material. Carbon 47(14):3346–3354CrossRef Ji L, Lin Z, Medford AJ, Zhang X (2009) Porous carbon nanofibers from electrospun polyacrylonitrile/SiO 2 composites as an energy storage material. Carbon 47(14):3346–3354CrossRef
5.
go back to reference Ji L, Zhang X (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20(15):155705CrossRef Ji L, Zhang X (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20(15):155705CrossRef
6.
go back to reference Go D, Lott P, Stollenwerk J et al (2016) Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity. ACS Appl Mater Interfaces 8(42):28412–28417CrossRef Go D, Lott P, Stollenwerk J et al (2016) Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity. ACS Appl Mater Interfaces 8(42):28412–28417CrossRef
7.
go back to reference Zhang T, Zhou P, Xiao B et al (2017) Controllable synthesis of porous C x N y nanofibers with enhanced electromagnetic wave absorption property. Ceram Int 43(12):8603–8610CrossRef Zhang T, Zhou P, Xiao B et al (2017) Controllable synthesis of porous C x N y nanofibers with enhanced electromagnetic wave absorption property. Ceram Int 43(12):8603–8610CrossRef
8.
go back to reference Wang Y, Li G, Jin J, Yang S (2017) Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts. Int J Hydrog Energy 42(9):5938–5947CrossRef Wang Y, Li G, Jin J, Yang S (2017) Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts. Int J Hydrog Energy 42(9):5938–5947CrossRef
9.
go back to reference Dou Y, Jin M, Zhou G et al (2015) Breath figure method for construction of honeycomb films. Membranes 5(3):399–424CrossRef Dou Y, Jin M, Zhou G et al (2015) Breath figure method for construction of honeycomb films. Membranes 5(3):399–424CrossRef
10.
go back to reference Zhang A, Bai H, Li L (2015) Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev 115(18):9801–9868CrossRef Zhang A, Bai H, Li L (2015) Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev 115(18):9801–9868CrossRef
11.
go back to reference Nezarati RM, Eifert MB, Cosgriff-Hernandez E (2013) Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Methods 19(10):810–819CrossRef Nezarati RM, Eifert MB, Cosgriff-Hernandez E (2013) Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng Part C Methods 19(10):810–819CrossRef
12.
go back to reference Lee WH, Park YD (2014) Organic semiconductor/insulator polymer blends for high-performance organic transistors. Polymers 6(4):1057–1073CrossRef Lee WH, Park YD (2014) Organic semiconductor/insulator polymer blends for high-performance organic transistors. Polymers 6(4):1057–1073CrossRef
16.
go back to reference Widawski G, Rawiso M, François B (1994) Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369(6479):387–389CrossRef Widawski G, Rawiso M, François B (1994) Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369(6479):387–389CrossRef
17.
go back to reference Srinivasarao M, Collings D, Philips A et al (2001) Three-dimensionally ordered array of air bubbles in a polymer film. Science 292(5514):79–83CrossRef Srinivasarao M, Collings D, Philips A et al (2001) Three-dimensionally ordered array of air bubbles in a polymer film. Science 292(5514):79–83CrossRef
18.
go back to reference Sharma V, Song L, Jones RL et al (2010) Effect of solvent choice on breath-figure-templated assembly of “holey” polymer films. EPL (Europhys Lett) 91(3):38001CrossRef Sharma V, Song L, Jones RL et al (2010) Effect of solvent choice on breath-figure-templated assembly of “holey” polymer films. EPL (Europhys Lett) 91(3):38001CrossRef
19.
go back to reference Megelski S, Stephens JS, Chase DB et al (2002) Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466CrossRef Megelski S, Stephens JS, Chase DB et al (2002) Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466CrossRef
20.
go back to reference Casper CL, Stephens JS, Tassi NG et al (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578CrossRef Casper CL, Stephens JS, Tassi NG et al (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578CrossRef
21.
go back to reference Brown P, Stevens K (2007) Nanofibers and nanotechnology in textiles. Woodhead Publishing, Cambridge Brown P, Stevens K (2007) Nanofibers and nanotechnology in textiles. Woodhead Publishing, Cambridge
22.
go back to reference Jeun J, Kim Y, Lim Y et al (2007) Electrospinning of poly (L-lactide-co-D, L-lactide). J Ind Eng Chem Seoul 13(4):592 Jeun J, Kim Y, Lim Y et al (2007) Electrospinning of poly (L-lactide-co-D, L-lactide). J Ind Eng Chem Seoul 13(4):592
23.
go back to reference Huang L, Bui NN, Manickam SS et al (2011) Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym Sci B Polym Phys 49(24):1734–1744CrossRef Huang L, Bui NN, Manickam SS et al (2011) Controlling electrospun nanofiber morphology and mechanical properties using humidity. J Polym Sci B Polym Phys 49(24):1734–1744CrossRef
24.
go back to reference Demir MM (2010) Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF. Exp Polym Lett, 4 (1), pp 2–8CrossRef Demir MM (2010) Investigation on glassy skin formation of porous polystyrene fibers electrospun from DMF. Exp Polym Lett, 4 (1), pp 2–8CrossRef
25.
go back to reference Bognitzki M, Czado W, Frese T et al (2001) Nanostructured fibers via electrospinning. Adv Mater 13(1):70–72CrossRef Bognitzki M, Czado W, Frese T et al (2001) Nanostructured fibers via electrospinning. Adv Mater 13(1):70–72CrossRef
26.
go back to reference Leong MF, Chian KS, Mhaisalkar PS et al (2009) Effect of electrospun poly (D, L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res A 89(4):1040–1048CrossRef Leong MF, Chian KS, Mhaisalkar PS et al (2009) Effect of electrospun poly (D, L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res A 89(4):1040–1048CrossRef
27.
go back to reference Zamani F, Amani-Tehran M, Latifi M et al (2013) The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. J Mater Sci Mater Med 24(6):1551CrossRef Zamani F, Amani-Tehran M, Latifi M et al (2013) The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. J Mater Sci Mater Med 24(6):1551CrossRef
28.
go back to reference Lubasova D, Martinova L (2011) Controlled morphology of porous polyvinyl butyral nanofibers. J Nanomater Article ID 292516, p 6 Lubasova D, Martinova L (2011) Controlled morphology of porous polyvinyl butyral nanofibers. J Nanomater Article ID 292516, p 6
29.
go back to reference Luo C, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51(7):1654–1662CrossRef Luo C, Nangrejo M, Edirisinghe M (2010) A novel method of selecting solvents for polymer electrospinning. Polymer 51(7):1654–1662CrossRef
30.
go back to reference Celebioglu A, Uyar T (2011) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett 65(14):2291–2294CrossRef Celebioglu A, Uyar T (2011) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett 65(14):2291–2294CrossRef
31.
go back to reference Haridas AK, Sharma CS, Sritharan V et al (2014) Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Adv 4(24):12188–12197CrossRef Haridas AK, Sharma CS, Sritharan V et al (2014) Fabrication and surface functionalization of electrospun polystyrene submicron fibers with controllable surface roughness. RSC Adv 4(24):12188–12197CrossRef
32.
go back to reference Lin J, Ding B, Yu J (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2(2):521–528CrossRef Lin J, Ding B, Yu J (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Interfaces 2(2):521–528CrossRef
33.
go back to reference Chen P-Y, Tung S-H (2017) One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules 50(6):2528–2534CrossRef Chen P-Y, Tung S-H (2017) One-step electrospinning to produce nonsolvent-induced macroporous fibers with ultrahigh oil adsorption capability. Macromolecules 50(6):2528–2534CrossRef
34.
go back to reference Qi Z, Yu H, Chen Y, Zhu M (2009) Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Mater Lett 63(3):415–418CrossRef Qi Z, Yu H, Chen Y, Zhu M (2009) Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly (l-lactic acid). Mater Lett 63(3):415–418CrossRef
35.
go back to reference Yu X, Xiang H, Long Y et al (2010) Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H 2 O. Mater Lett 64(22):2407–2409CrossRef Yu X, Xiang H, Long Y et al (2010) Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H 2 O. Mater Lett 64(22):2407–2409CrossRef
36.
go back to reference McCann JT, Marquez M, Xia Y (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128(5):1436–1437CrossRef McCann JT, Marquez M, Xia Y (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128(5):1436–1437CrossRef
37.
go back to reference Shen Z, Thompson BE, McHugh MA (2006) Electrospinning in near-critical CO2. Macromolecules 39(25):8553–8555CrossRef Shen Z, Thompson BE, McHugh MA (2006) Electrospinning in near-critical CO2. Macromolecules 39(25):8553–8555CrossRef
38.
go back to reference Liu J, Shen Z, Lee S-H et al (2010) Electrospinning in compressed carbon dioxide: hollow or open-cell fiber formation with a single nozzle configuration. J Supercrit Fluids 53(1):142–150CrossRef Liu J, Shen Z, Lee S-H et al (2010) Electrospinning in compressed carbon dioxide: hollow or open-cell fiber formation with a single nozzle configuration. J Supercrit Fluids 53(1):142–150CrossRef
39.
go back to reference Nayani K, Katepalli H, Sharma CS et al (2011) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind Eng Chem Res 51(4):1761–1766CrossRef Nayani K, Katepalli H, Sharma CS et al (2011) Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Ind Eng Chem Res 51(4):1761–1766CrossRef
40.
go back to reference Kim CH, Jung YH, Kim HY et al (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14(1):59–65CrossRef Kim CH, Jung YH, Kim HY et al (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14(1):59–65CrossRef
41.
go back to reference Bognitzki M, Frese T, Steinhart M et al (2001) Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends. Polym Eng Sci 41(6):982–989CrossRef Bognitzki M, Frese T, Steinhart M et al (2001) Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends. Polym Eng Sci 41(6):982–989CrossRef
42.
go back to reference You Y, Youk JH, Lee SW et al (2006) Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett 60(6):757–760CrossRef You Y, Youk JH, Lee SW et al (2006) Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater Lett 60(6):757–760CrossRef
43.
go back to reference Zhang Y, Feng Y, Huang Z, Ramakrishna S et al (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17(3):901CrossRef Zhang Y, Feng Y, Huang Z, Ramakrishna S et al (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17(3):901CrossRef
44.
go back to reference Zhang L, Hsieh Y-L (2006) Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology 17(17):4416CrossRef Zhang L, Hsieh Y-L (2006) Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology 17(17):4416CrossRef
45.
go back to reference Gao J-F, Hu M-J, Li W et al (2014) Morphological evolution from porous nanofibers to rice like nanobeans. Mater Lett 128:110–113CrossRef Gao J-F, Hu M-J, Li W et al (2014) Morphological evolution from porous nanofibers to rice like nanobeans. Mater Lett 128:110–113CrossRef
46.
go back to reference Kim C, Jeong YI, Ngoc BTN et al (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1):91–95CrossRef Kim C, Jeong YI, Ngoc BTN et al (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3(1):91–95CrossRef
47.
go back to reference Lee B-S, Son S-B, Park K-M et al (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4(12):6702–6710CrossRef Lee B-S, Son S-B, Park K-M et al (2012) Effect of pores in hollow carbon nanofibers on their negative electrode properties for a lithium rechargeable battery. ACS Appl Mater Interfaces 4(12):6702–6710CrossRef
48.
go back to reference Liu H, Cao C-Y, Wei F-F et al (2014) Flexible macroporous carbon nanofiber film with high oil adsorption capacity. J Mater Chem A 2(10):3557–3562CrossRef Liu H, Cao C-Y, Wei F-F et al (2014) Flexible macroporous carbon nanofiber film with high oil adsorption capacity. J Mater Chem A 2(10):3557–3562CrossRef
49.
go back to reference Gupta A, Saquing CD, Afshari M et al (2008) Porous nylon-6 fibers via a novel salt-induced electrospinning method. Macromolecules 42(3):709–715CrossRef Gupta A, Saquing CD, Afshari M et al (2008) Porous nylon-6 fibers via a novel salt-induced electrospinning method. Macromolecules 42(3):709–715CrossRef
50.
go back to reference Ma G, Yang D, Nie J (2009) Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning. Polym Adv Technol 20(2):147–150CrossRef Ma G, Yang D, Nie J (2009) Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning. Polym Adv Technol 20(2):147–150CrossRef
51.
go back to reference Ji L, Medford AJ, Zhang X (2009) Porous carbon nanofibers loaded with manganese oxide particles: formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19(31):5593–5601CrossRef Ji L, Medford AJ, Zhang X (2009) Porous carbon nanofibers loaded with manganese oxide particles: formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19(31):5593–5601CrossRef
52.
go back to reference Birajdar MS, Lee J (2015) Nanoscale bumps and dents on nanofibers enabling sonication-responsive wetting and improved moisture collection. Macromol Mater Eng 300(11):1108–1115CrossRef Birajdar MS, Lee J (2015) Nanoscale bumps and dents on nanofibers enabling sonication-responsive wetting and improved moisture collection. Macromol Mater Eng 300(11):1108–1115CrossRef
53.
go back to reference Yousefzadeh M, Aghasilou P, Heydari M, Latifi M (2017) Photo-catalysis properties of electrospun ceramic TiO2 nanofibers with different structure and morphology. In: Proceeding of spring fiber society conference, Aachen, Germany Yousefzadeh M, Aghasilou P, Heydari M, Latifi M (2017) Photo-catalysis properties of electrospun ceramic TiO2 nanofibers with different structure and morphology. In: Proceeding of spring fiber society conference, Aachen, Germany
54.
go back to reference Standard guide for assessing microstructure of polymeric scaffolds for use in tissue engineered medical product. vol F2450- 04. ASTM Standard guide for assessing microstructure of polymeric scaffolds for use in tissue engineered medical product. vol F2450- 04. ASTM
55.
go back to reference Andrady AL (2008) Science and technology of polymer nanofibers. Wiley, HobokenCrossRef Andrady AL (2008) Science and technology of polymer nanofibers. Wiley, HobokenCrossRef
56.
go back to reference Meyer K, Lorenz P, Böhl-Kuhn B et al (1994) Porous solids and their characterization methods of investigation and application. Cryst Res Technol 29(7):903–930CrossRef Meyer K, Lorenz P, Böhl-Kuhn B et al (1994) Porous solids and their characterization methods of investigation and application. Cryst Res Technol 29(7):903–930CrossRef
57.
go back to reference Hang Y, Zhang Y, Jin Y et al (2012) Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. Int J Biol Macromol 51(5):980–986CrossRef Hang Y, Zhang Y, Jin Y et al (2012) Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. Int J Biol Macromol 51(5):980–986CrossRef
58.
go back to reference Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528CrossRef Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528CrossRef
59.
go back to reference Li D, Wang J, Dong X et al (2013) Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. J Mater Sci 48:5930–5937CrossRef Li D, Wang J, Dong X et al (2013) Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. J Mater Sci 48:5930–5937CrossRef
60.
go back to reference Qin X (2017) Coaxial electrospinning of nanofibers. In: Afshari M (ed) Electrsopun Nanofibers. Woodhead Publishing, Cambridge, pp 41–71CrossRef Qin X (2017) Coaxial electrospinning of nanofibers. In: Afshari M (ed) Electrsopun Nanofibers. Woodhead Publishing, Cambridge, pp 41–71CrossRef
61.
go back to reference Zamani F, Jahanmard F, Ghasemkhah F, Amjad-Iranagh S, Bagherzadeh R, Amani-Tehran M, Latifi, Masoud (2017) Nanofibrous and nanoparticle materials as drug-delivery systems. In: Andronescu E, Grumezescu A (eds) Nanostructures for Drug Delivery. Micro and Nano Technologies, Esevier, Amsterdam, pp 239–270CrossRef Zamani F, Jahanmard F, Ghasemkhah F, Amjad-Iranagh S, Bagherzadeh R, Amani-Tehran M, Latifi, Masoud (2017) Nanofibrous and nanoparticle materials as drug-delivery systems. In: Andronescu E, Grumezescu A (eds) Nanostructures for Drug Delivery. Micro and Nano Technologies, Esevier, Amsterdam, pp 239–270CrossRef
62.
go back to reference Hadjizadeh A, Ghasemkhah F, Ghasemzaie N (2017) Polymeric scaffold based gene delivery strategies to improve angiogenesis in tissue engineering: a review. Polym Rev 57(3):505–556CrossRef Hadjizadeh A, Ghasemkhah F, Ghasemzaie N (2017) Polymeric scaffold based gene delivery strategies to improve angiogenesis in tissue engineering: a review. Polym Rev 57(3):505–556CrossRef
63.
go back to reference Han D, Steckl AJ (2013) Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 5(16):8241–8245CrossRef Han D, Steckl AJ (2013) Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 5(16):8241–8245CrossRef
64.
go back to reference Yu D-G, Li X-Y, Wang X et al (2015) Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mater Interfaces 7(33):18891–18897CrossRef Yu D-G, Li X-Y, Wang X et al (2015) Nanofibers fabricated using triaxial electrospinning as zero order drug delivery systems. ACS Appl Mater Interfaces 7(33):18891–18897CrossRef
65.
go back to reference Khalf A, Madihally SV (2016) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17CrossRef Khalf A, Madihally SV (2016) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17CrossRef
66.
go back to reference Chan KHK, Kotaki M (2009) Fabrication and morphology control of poly (methyl methacrylate) hollow structures via coaxial electrospinning. J Appl Polym Sci 111(1):408–416CrossRef Chan KHK, Kotaki M (2009) Fabrication and morphology control of poly (methyl methacrylate) hollow structures via coaxial electrospinning. J Appl Polym Sci 111(1):408–416CrossRef
67.
go back to reference Li Y, Liu J, de Bruyn JR et al (2014) Optimization of the electrospinning process for core–shell fiber preparation. J Biomater Tissue Eng 4(11):973–980CrossRef Li Y, Liu J, de Bruyn JR et al (2014) Optimization of the electrospinning process for core–shell fiber preparation. J Biomater Tissue Eng 4(11):973–980CrossRef
68.
go back to reference Pakravan M, Heuzey M-C, Ajji A (2012) Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13(2):412–421CrossRef Pakravan M, Heuzey M-C, Ajji A (2012) Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13(2):412–421CrossRef
69.
go back to reference Romano L, Camposeo A, Manco R et al (2016) Core–shell electrospun fibers encapsulating chromophores or luminescent proteins for microscopically controlled molecular release. Mol Pharm 13(3):729–736CrossRef Romano L, Camposeo A, Manco R et al (2016) Core–shell electrospun fibers encapsulating chromophores or luminescent proteins for microscopically controlled molecular release. Mol Pharm 13(3):729–736CrossRef
70.
go back to reference Sun Z, Zussman E, Yarin AL et al (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932CrossRef Sun Z, Zussman E, Yarin AL et al (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15(22):1929–1932CrossRef
71.
go back to reference Jiang H, Hu Y, Li Y et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108(2):237–243CrossRef Jiang H, Hu Y, Li Y et al (2005) A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release 108(2):237–243CrossRef
72.
go back to reference Zhang Y, Huang Z-M, Xu X et al (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16(18):3406–3409CrossRef Zhang Y, Huang Z-M, Xu X et al (2004) Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 16(18):3406–3409CrossRef
73.
go back to reference Mondal K, Sharma A (2016) Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv 6(97):94595–94616CrossRef Mondal K, Sharma A (2016) Recent advances in electrospun metal-oxide nanofiber based interfaces for electrochemical biosensing. RSC Adv 6(97):94595–94616CrossRef
74.
go back to reference Lopez-Herrera J, Barrero A, Lopez A, Loscertales I et al (2003) Coaxial jets generated from electrified Taylor cones. Scaling laws. J Aerosol Sci 34(5):535–552CrossRef Lopez-Herrera J, Barrero A, Lopez A, Loscertales I et al (2003) Coaxial jets generated from electrified Taylor cones. Scaling laws. J Aerosol Sci 34(5):535–552CrossRef
75.
go back to reference Moghe A, Gupta B (2008) Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353–377CrossRef Moghe A, Gupta B (2008) Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353–377CrossRef
76.
go back to reference Díaz JE, Fernández-Nieves A, Barrero A et al (2008) Fabrication of structured micro and nanofibers by coaxial electrospinning. J Phys Conf Ser 127:012008. IOP PublishingCrossRef Díaz JE, Fernández-Nieves A, Barrero A et al (2008) Fabrication of structured micro and nanofibers by coaxial electrospinning. J Phys Conf Ser 127:012008. IOP PublishingCrossRef
77.
go back to reference Loscertales IG, Barrero A, Guerrero I et al (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295(5560):1695–1698CrossRef Loscertales IG, Barrero A, Guerrero I et al (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295(5560):1695–1698CrossRef
78.
go back to reference Larsen G, Velarde-Ortiz R, Minchow K et al (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol–gel chemistry and electrically forced liquid jets. J Am Chem Soc 125(5):1154–1155CrossRef Larsen G, Velarde-Ortiz R, Minchow K et al (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol–gel chemistry and electrically forced liquid jets. J Am Chem Soc 125(5):1154–1155CrossRef
79.
go back to reference Loscertales IG, Barrero A, Márquez M et al (2004) Electrically forced coaxial nanojets for one-step hollow nanofiber design. J Am Chem Soc 126(17):5376–5377CrossRef Loscertales IG, Barrero A, Márquez M et al (2004) Electrically forced coaxial nanojets for one-step hollow nanofiber design. J Am Chem Soc 126(17):5376–5377CrossRef
80.
go back to reference Qian W, Yu D-G, Li Y, Liao Y-Z, Wang X, Wang L (2014) Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci 15(1):774–786CrossRef Qian W, Yu D-G, Li Y, Liao Y-Z, Wang X, Wang L (2014) Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase. Int J Mol Sci 15(1):774–786CrossRef
81.
go back to reference Wang M, Jing N, Su CB et al (2006) Electrospinning of silica nanochannels for single molecule detection. Appl Phys Lett 88(3):033106CrossRef Wang M, Jing N, Su CB et al (2006) Electrospinning of silica nanochannels for single molecule detection. Appl Phys Lett 88(3):033106CrossRef
82.
go back to reference Chakraborty S, Liao I-C, Adler A et al (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61(12):1043–1054CrossRef Chakraborty S, Liao I-C, Adler A et al (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61(12):1043–1054CrossRef
83.
go back to reference Wang C, Yan K-W, Lin Y-D et al (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397CrossRef Wang C, Yan K-W, Lin Y-D et al (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397CrossRef
84.
go back to reference Chen H, Wang N, Di J et al (2010) Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26(13):11291–11296CrossRef Chen H, Wang N, Di J et al (2010) Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 26(13):11291–11296CrossRef
85.
go back to reference Khalf A, Singarapu K, Madihally SV (2015) Influence of solvent characteristics in triaxial electrospun fiber formation. React Funct Polym 90:36–46CrossRef Khalf A, Singarapu K, Madihally SV (2015) Influence of solvent characteristics in triaxial electrospun fiber formation. React Funct Polym 90:36–46CrossRef
86.
go back to reference Lee B-S, Yang H-S, Yu W-R (2014) Fabrication of double-tubular carbon nanofibers using quadruple coaxial electrospinning. Nanotechnology 25(46):465602CrossRef Lee B-S, Yang H-S, Yu W-R (2014) Fabrication of double-tubular carbon nanofibers using quadruple coaxial electrospinning. Nanotechnology 25(46):465602CrossRef
87.
go back to reference Zhao Y, Cao X, Jiang L (2007) Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 129(4):764–765CrossRef Zhao Y, Cao X, Jiang L (2007) Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 129(4):764–765CrossRef
88.
go back to reference McCann JT, Marquez M, Xia Y (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872CrossRef McCann JT, Marquez M, Xia Y (2006) Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett 6(12):2868–2872CrossRef
89.
go back to reference Li F, Zhao Y, Wang S et al (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274CrossRef Li F, Zhao Y, Wang S et al (2009) Thermochromic core–shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 112(1):269–274CrossRef
90.
go back to reference Lee B-S, Jeon S-Y, Park H et al (2014) New electrospinning nozzle to reduce jet instability and its application to manufacture of multi-layered nanofibers. Sci Rep 4:6758CrossRef Lee B-S, Jeon S-Y, Park H et al (2014) New electrospinning nozzle to reduce jet instability and its application to manufacture of multi-layered nanofibers. Sci Rep 4:6758CrossRef
91.
go back to reference Kalra V, Mendez S, Lee JH et al (2006) Confined assembly in coaxially electrospun block copolymer fibers. Adv Mater 18(24):3299–3303CrossRef Kalra V, Mendez S, Lee JH et al (2006) Confined assembly in coaxially electrospun block copolymer fibers. Adv Mater 18(24):3299–3303CrossRef
92.
go back to reference Kalra V, Lee JH, Park JH et al (2009) Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning. Small 5(20):2323–2332CrossRef Kalra V, Lee JH, Park JH et al (2009) Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning. Small 5(20):2323–2332CrossRef
93.
go back to reference Ma M, Titievsky K, Thomas EL et al (2009) Continuous concentric lamellar block copolymer nanofibers with long range order. Nano Lett 9(4):1678–1683CrossRef Ma M, Titievsky K, Thomas EL et al (2009) Continuous concentric lamellar block copolymer nanofibers with long range order. Nano Lett 9(4):1678–1683CrossRef
94.
go back to reference Lee KJ, Park T-H, Hwang S et al (2013) Janus-core and shell microfibers. Langmuir 29(20):6181–6186CrossRef Lee KJ, Park T-H, Hwang S et al (2013) Janus-core and shell microfibers. Langmuir 29(20):6181–6186CrossRef
95.
go back to reference Kurban Z, Lovell A, Bennington SM et al (2010) A solution selection model for coaxial electrospinning and its application to nanostructured hydrogen storage materials. J Phys Chem C 114(49):21201–21213CrossRef Kurban Z, Lovell A, Bennington SM et al (2010) A solution selection model for coaxial electrospinning and its application to nanostructured hydrogen storage materials. J Phys Chem C 114(49):21201–21213CrossRef
96.
go back to reference Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16(17):1562–1566CrossRef Yu JH, Fridrikh SV, Rutledge GC (2004) Production of submicrometer diameter fibers by two-fluid electrospinning. Adv Mater 16(17):1562–1566CrossRef
97.
go back to reference Díaz JE, Barrero A, Márquez M et al (2006) Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Funct Mater 16(16):2110–2116CrossRef Díaz JE, Barrero A, Márquez M et al (2006) Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Adv Funct Mater 16(16):2110–2116CrossRef
98.
go back to reference Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938CrossRef Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938CrossRef
99.
go back to reference Kwak G, Lee GH, Shim S et al (2008) Fabrication of light-guiding core/sheath fibers by coaxial electrospinning. Macromol Rapid Commun 29(10):815–820CrossRef Kwak G, Lee GH, Shim S et al (2008) Fabrication of light-guiding core/sheath fibers by coaxial electrospinning. Macromol Rapid Commun 29(10):815–820CrossRef
100.
go back to reference Chen S, Hou H, Hu P et al (2009) Polymeric nanosprings by bicomponent electrospinning. Macromol Mater Eng 294(4):265–271CrossRef Chen S, Hou H, Hu P et al (2009) Polymeric nanosprings by bicomponent electrospinning. Macromol Mater Eng 294(4):265–271CrossRef
101.
go back to reference Zhang H, Zhao C, Zhao Y et al (2010) Electrospinning of ultrafine core/shell fibers for biomedical applications. Sci China Chem 53(6):1246–1254CrossRef Zhang H, Zhao C, Zhao Y et al (2010) Electrospinning of ultrafine core/shell fibers for biomedical applications. Sci China Chem 53(6):1246–1254CrossRef
102.
go back to reference Li D, Babel A, Jenekhe SA et al (2004) Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv Mater 16(22):2062–2066CrossRef Li D, Babel A, Jenekhe SA et al (2004) Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv Mater 16(22):2062–2066CrossRef
103.
go back to reference Arinstein A, Avrahami R, Zussman E (2009) Buckling behaviour of electrospun microtubes: a simple theoretical model and experimental observations. J Phys D Appl Phys 42(1):015507CrossRef Arinstein A, Avrahami R, Zussman E (2009) Buckling behaviour of electrospun microtubes: a simple theoretical model and experimental observations. J Phys D Appl Phys 42(1):015507CrossRef
104.
go back to reference Wei M, Kang B, Sung C et al (2006) Core-sheath structure in electrospun nanofibers from polymer blends. Macromol Mater Eng 291(11):1307–1314CrossRef Wei M, Kang B, Sung C et al (2006) Core-sheath structure in electrospun nanofibers from polymer blends. Macromol Mater Eng 291(11):1307–1314CrossRef
105.
go back to reference Vasita R, Gelain F (2013) Core-sheath fibers for regenerative medicine. In: Tiwari A, Tiwari A (eds) Nanomaterials in drug delivery, imaging, and tissue engineering, Wiley, Hoboken, pp 493–534CrossRef Vasita R, Gelain F (2013) Core-sheath fibers for regenerative medicine. In: Tiwari A, Tiwari A (eds) Nanomaterials in drug delivery, imaging, and tissue engineering, Wiley, Hoboken, pp 493–534CrossRef
106.
go back to reference Repanas A, Wolkers W, Gryshkov O et al (2015) Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents. Clin Exp Pharmacol 5(5):1–4CrossRef Repanas A, Wolkers W, Gryshkov O et al (2015) Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents. Clin Exp Pharmacol 5(5):1–4CrossRef
107.
go back to reference Huang HH, He CL, Wang HS et al (2009) Preparation of core-shell biodegradable microfibers for long-term drug delivery. J Biomed Mater Res A 90(4):1243–1251CrossRef Huang HH, He CL, Wang HS et al (2009) Preparation of core-shell biodegradable microfibers for long-term drug delivery. J Biomed Mater Res A 90(4):1243–1251CrossRef
108.
go back to reference Yan S, Xiaoqiang L, Lianjiang T et al (2009) Poly (l-lactide-co-ɛ-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer 50(17):4212–4219CrossRef Yan S, Xiaoqiang L, Lianjiang T et al (2009) Poly (l-lactide-co-ɛ-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer 50(17):4212–4219CrossRef
109.
go back to reference Zhang J, Choi S-W, Kim SS (2011) Micro-and nano-scale hollow TiO 2 fibers by coaxial electrospinning: preparation and gas sensing. J Solid State Chem 184(11):3008–3013CrossRef Zhang J, Choi S-W, Kim SS (2011) Micro-and nano-scale hollow TiO 2 fibers by coaxial electrospinning: preparation and gas sensing. J Solid State Chem 184(11):3008–3013CrossRef
110.
go back to reference Larsen G, Spretz R, Velarde-Ortiz R (2004) Use of coaxial gas jackets to stabilize Taylor cones of volatile solutions and to induce particle-to-fiber transitions. Adv Mater 16(2):166–169CrossRef Larsen G, Spretz R, Velarde-Ortiz R (2004) Use of coaxial gas jackets to stabilize Taylor cones of volatile solutions and to induce particle-to-fiber transitions. Adv Mater 16(2):166–169CrossRef
111.
go back to reference Liu G, Tang Q, Yu Y et al (2014) Electrospun core–sheath fibers for integrating the biocompatibility of silk fibroin and the mechanical properties of PLCL. Polym Adv Technol 25(12):1596–1603CrossRef Liu G, Tang Q, Yu Y et al (2014) Electrospun core–sheath fibers for integrating the biocompatibility of silk fibroin and the mechanical properties of PLCL. Polym Adv Technol 25(12):1596–1603CrossRef
112.
go back to reference Yu D-G, Lu P, Branford-White C et al (2011) Polyacrylonitrile nanofibers prepared using coaxial electrospinning with LiCl solution as sheath fluid. Nanotechnology 22(43):435301CrossRef Yu D-G, Lu P, Branford-White C et al (2011) Polyacrylonitrile nanofibers prepared using coaxial electrospinning with LiCl solution as sheath fluid. Nanotechnology 22(43):435301CrossRef
113.
go back to reference Dong H, Nyame V, MacDiarmid AG et al (2004) Polyaniline/poly (methyl methacrylate) coaxial fibers: the fabrication and effects of the solution properties on the morphology of electrospun core fibers. J Polym Sci B Polym Phys 42(21):3934–3942CrossRef Dong H, Nyame V, MacDiarmid AG et al (2004) Polyaniline/poly (methyl methacrylate) coaxial fibers: the fabrication and effects of the solution properties on the morphology of electrospun core fibers. J Polym Sci B Polym Phys 42(21):3934–3942CrossRef
114.
go back to reference Hu Y, Huang Z-M (2007) Numerical study on two-phase flow patterns in coaxial electrospinning. J Appl Phys 101(8):084307CrossRef Hu Y, Huang Z-M (2007) Numerical study on two-phase flow patterns in coaxial electrospinning. J Appl Phys 101(8):084307CrossRef
115.
go back to reference Katti DS, Robinson KW, Ko FK et al (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater 70(2):286–296CrossRef Katti DS, Robinson KW, Ko FK et al (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater 70(2):286–296CrossRef
116.
go back to reference Sun B, Long Y, Zhang H et al (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890CrossRef Sun B, Long Y, Zhang H et al (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39(5):862–890CrossRef
117.
go back to reference Chen X, Jia L, Yin X et al (2005) Spraying modes in coaxial jet electrospray with outer driving liquid. Phys Fluids 17(3):032101CrossRef Chen X, Jia L, Yin X et al (2005) Spraying modes in coaxial jet electrospray with outer driving liquid. Phys Fluids 17(3):032101CrossRef
118.
go back to reference Gonçalves RP, da Silva FF, Picciani PH et al (2015) Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning. Mater Sci Appl 6(02):189 Gonçalves RP, da Silva FF, Picciani PH et al (2015) Morphology and thermal properties of core-shell PVA/PLA ultrafine fibers produced by coaxial electrospinning. Mater Sci Appl 6(02):189
119.
go back to reference Xia X, Wang X, Zhou H et al (2014) The effects of electrospinning parameters on coaxial Sn/C nanofibers: morphology and lithium storage performance. Electrochim Acta 121:345–351CrossRef Xia X, Wang X, Zhou H et al (2014) The effects of electrospinning parameters on coaxial Sn/C nanofibers: morphology and lithium storage performance. Electrochim Acta 121:345–351CrossRef
120.
go back to reference Nguyen TT, Ghosh C, Hwang S-G et al (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439(1):296–306CrossRef Nguyen TT, Ghosh C, Hwang S-G et al (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439(1):296–306CrossRef
121.
go back to reference Xu X, Yang L, Xu X et al (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release 108(1):33–42CrossRef Xu X, Yang L, Xu X et al (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release 108(1):33–42CrossRef
122.
go back to reference Xu X, Zhuang X, Chen X et al (2006) Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun 27(19):1637–1642CrossRef Xu X, Zhuang X, Chen X et al (2006) Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun 27(19):1637–1642CrossRef
123.
go back to reference Angeles M, Cheng HL, Velankar SS (2008) Emulsion electrospinning: composite fibers from drop breakup during electrospinning. Polym Adv Technol 19(7):728–733CrossRef Angeles M, Cheng HL, Velankar SS (2008) Emulsion electrospinning: composite fibers from drop breakup during electrospinning. Polym Adv Technol 19(7):728–733CrossRef
124.
go back to reference Xu X, Chen X, Ma PA et al (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70(1):165–170CrossRef Xu X, Chen X, Ma PA et al (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning. Eur J Pharm Biopharm 70(1):165–170CrossRef
125.
go back to reference Viry L, Moulton SE, Romeo T et al (2012) Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. J Mater Chem 22(22):11347–11353CrossRef Viry L, Moulton SE, Romeo T et al (2012) Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. J Mater Chem 22(22):11347–11353CrossRef
126.
go back to reference Bazilevsky AV, Yarin AL, Megaridis CM (2007) Co-electrospinning of core–shell fibers using a single-nozzle technique. Langmuir 23(5):2311–2314CrossRef Bazilevsky AV, Yarin AL, Megaridis CM (2007) Co-electrospinning of core–shell fibers using a single-nozzle technique. Langmuir 23(5):2311–2314CrossRef
127.
go back to reference Smolen JA (2010) Emulsion electrospinning for producing dome-shaped structures within l-tyrosine polyurethane scaffolds for gene delivery. University of Akron, Akron Smolen JA (2010) Emulsion electrospinning for producing dome-shaped structures within l-tyrosine polyurethane scaffolds for gene delivery. University of Akron, Akron
128.
go back to reference Forward KM, Flores A, Rutledge GC (2013) Production of core/shell fibers by electrospinning from a free surface. Chem Eng Sci 104:250–259CrossRef Forward KM, Flores A, Rutledge GC (2013) Production of core/shell fibers by electrospinning from a free surface. Chem Eng Sci 104:250–259CrossRef
129.
go back to reference Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262CrossRef Jiang G, Qin X (2014) An improved free surface electrospinning for high throughput manufacturing of core–shell nanofibers. Mater Lett 128:259–262CrossRef
130.
go back to reference VYSLOUŽILOVÁ L, BUZGO M, MOHROVÁ J, POKORNÝ P, BÍLEK M, PEJCHAR K, LUKÁŠ D (2012) Productivity enhancement of core/shell nanofibers. In: Nanocon, Brno, October 23 – 25, p 42, Ostrava, Czech Republic. ISBN 978-80-98294-32-1 VYSLOUŽILOVÁ L, BUZGO M, MOHROVÁ J, POKORNÝ P, BÍLEK M, PEJCHAR K, LUKÁŠ D (2012) Productivity enhancement of core/shell nanofibers. In: Nanocon, Brno, October 23 – 25, p 42, Ostrava, Czech Republic. ISBN 978-80-98294-32-1
131.
go back to reference Jiang Y, Fang D, Song G et al (2013) Fabrication of core–shell nanofibers by single capillary electrospinning combined with vapor induced phase separation. New J Chem 37(9):2917–2924CrossRef Jiang Y, Fang D, Song G et al (2013) Fabrication of core–shell nanofibers by single capillary electrospinning combined with vapor induced phase separation. New J Chem 37(9):2917–2924CrossRef
132.
go back to reference Wang M, Fang D, Wang N et al (2014) Preparation of PVDF/PVP core–shell nanofibers mats via homogeneous electrospinning. Polymer 55(9):2188–2196CrossRef Wang M, Fang D, Wang N et al (2014) Preparation of PVDF/PVP core–shell nanofibers mats via homogeneous electrospinning. Polymer 55(9):2188–2196CrossRef
133.
go back to reference Niu Q, Zeng L, Mu X et al (2016) Preparation and characterization of core-shell nanofibers by electrospinning combined with in situ UV photopolymerization. J Ind Eng Chem 34:337–343CrossRef Niu Q, Zeng L, Mu X et al (2016) Preparation and characterization of core-shell nanofibers by electrospinning combined with in situ UV photopolymerization. J Ind Eng Chem 34:337–343CrossRef
134.
go back to reference Yu H, Jia Y, Yao C et al (2014) PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int J Pharm 469(1):17–22CrossRef Yu H, Jia Y, Yao C et al (2014) PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int J Pharm 469(1):17–22CrossRef
135.
go back to reference Machmudah S, Kanda H, Okubayashi S et al (2014) Formation of PVP hollow fibers by electrospinning in one-step process at sub and supercritical CO2. Chem Eng Process Process Intensif 77:1–6CrossRef Machmudah S, Kanda H, Okubayashi S et al (2014) Formation of PVP hollow fibers by electrospinning in one-step process at sub and supercritical CO2. Chem Eng Process Process Intensif 77:1–6CrossRef
136.
go back to reference Sfakis L, Sharikova A, Tuschel D et al (2017) Core/shell nanofiber characterization by Raman scanning microscopy. Biomed Opt Express 8(2):1025–1035CrossRef Sfakis L, Sharikova A, Tuschel D et al (2017) Core/shell nanofiber characterization by Raman scanning microscopy. Biomed Opt Express 8(2):1025–1035CrossRef
137.
go back to reference Chen R, Huang C, Ke Q et al (2010) Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces 79(2):315–325CrossRef Chen R, Huang C, Ke Q et al (2010) Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces 79(2):315–325CrossRef
Metadata
Title
Design of Porous, Core-Shell, and Hollow Nanofibers
Authors
Maryam Yousefzadeh
Farzaneh Ghasemkhah
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_9

Premium Partners