Skip to main content
Top
Published in: Wireless Personal Communications 2/2018

19-12-2017

Design of Probability Density Function Targeting Energy Efficient Network for Coalition Based WSNs

Authors: Richa Mishra, Vivekanand Jha, Rajeev K. Tripathi, Ajay K. Sharma

Published in: Wireless Personal Communications | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy consumption is one of the important issues in wireless sensor network that rely on non chargeable batteries for power. Also, the sensor network has to maintain a desired sensing coverage area along with periodically sending of the sensed data to the base station. Therefore, coverage and the lifetime are the two important issues that need to be addressed. Effective deployment of wireless sensors is a major concern as the coverage and lifetime of any wireless sensor network depends on it. In this paper, we propose the design of a Probability Density Function (PDF) targeting the desired coverage, and energy efficient node deployment scheme. The suitability of the proposed PDF based node distribution to model the network architecture considered in this work has been analyzed. The PDF divides the deployment area into concentric coronas and provides a probability of occurrence of a node within any corona. Further, the performance of the proposed PDF is evaluated in terms of the coverage, the number of transmissions of packets and the lifetime of the network. The scheme is compared with the existing node deployment schemes based on various distributions. The percentage gain of the proposed PDF based node deployment is 32\(\%\) more than that when compared with the existing schemes. Thus, the simulation results obtained confirm the schemes superiority over the other existing schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mishra, R., Kumar, P., Chaudhury, S., & Indu, S. (2013). Monitoring a large surveillance space through distributed face matching. In 2013 fourth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG) (pp. 1–5). Mishra, R., Kumar, P., Chaudhury, S., & Indu, S. (2013). Monitoring a large surveillance space through distributed face matching. In 2013 fourth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG) (pp. 1–5).
2.
go back to reference Rajwade, K. C. & Gawali, D. H. (2016). Wearable sensors based pilgrim tracking and health monitoring system. In 2016 international conference on computing communication control and automation (ICCUBEA) (pp. 1–5). Rajwade, K. C. & Gawali, D. H. (2016). Wearable sensors based pilgrim tracking and health monitoring system. In 2016 international conference on computing communication control and automation (ICCUBEA) (pp. 1–5).
3.
go back to reference Dencker, F., Wurz, M., Dubrovskiy, S. & Koroleva, E. (2016). An application report: Protective thin film layers for high temperature sensor technology. In 2016 IEEE NW Russia young researchers in electrical and electronic engineering conference (EIConRusNW) (pp. 32–36). Dencker, F., Wurz, M., Dubrovskiy, S. & Koroleva, E. (2016). An application report: Protective thin film layers for high temperature sensor technology. In 2016 IEEE NW Russia young researchers in electrical and electronic engineering conference (EIConRusNW) (pp. 32–36).
5.
go back to reference Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (Vol. 2). Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (Vol. 2).
6.
go back to reference Farooq, M. O., Dogar, A. B., & Shah, G. A. (2010). Mr-leach: Multi-hop routing with low energy adaptive clustering hierarchy. In 2010 fourth international conference on sensor technologies and applications (SENSORCOMM) (pp. 262–268). Farooq, M. O., Dogar, A. B., & Shah, G. A. (2010). Mr-leach: Multi-hop routing with low energy adaptive clustering hierarchy. In 2010 fourth international conference on sensor technologies and applications (SENSORCOMM) (pp. 262–268).
7.
go back to reference Ye, M., Li, C., Chen, G., & Wu, J. (2005). Eecs: An energy efficient clustering scheme in wireless sensor networks. In PCCC 2005 24th IEEE international performance computing, and communications conference (pp. 535–540). Ye, M., Li, C., Chen, G., & Wu, J. (2005). Eecs: An energy efficient clustering scheme in wireless sensor networks. In PCCC 2005 24th IEEE international performance computing, and communications conference (pp. 535–540).
8.
go back to reference Lara, R., Bentez, D., Caamao, A., Mennaro, M., & Rojo-lvarez, J. L. (2015). On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks. IEEE Sensors Journal, 15(6), 3514–3523.CrossRef Lara, R., Bentez, D., Caamao, A., Mennaro, M., & Rojo-lvarez, J. L. (2015). On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks. IEEE Sensors Journal, 15(6), 3514–3523.CrossRef
9.
go back to reference Bandyopadhyay, S. & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In INFOCOM 2003 Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 3, pp. 1713–1723). Bandyopadhyay, S. & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In INFOCOM 2003 Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 3, pp. 1713–1723).
10.
go back to reference Kenyeres, M., Kenyeres, J., & Skorpil, V. (2015). Split distributed computing in wireless sensor networks. Radioengineering, 24(3), 749–756.CrossRef Kenyeres, M., Kenyeres, J., & Skorpil, V. (2015). Split distributed computing in wireless sensor networks. Radioengineering, 24(3), 749–756.CrossRef
11.
go back to reference Kenyeres, M., Kenyeres, J. & Rupp, M. (2011). WSN implementation of the average consensus algorithm. In 11th European wireless conference, Vienna (pp. 1–8). Kenyeres, M., Kenyeres, J. & Rupp, M. (2011). WSN implementation of the average consensus algorithm. In 11th European wireless conference, Vienna (pp. 1–8).
12.
go back to reference Kenyeres, J., Kenyeres, M., & Rupp, M. (2013). Connectivity based self-localization in WSNs. Radioengineering, 22(3), 818–827. Kenyeres, J., Kenyeres, M., & Rupp, M. (2013). Connectivity based self-localization in WSNs. Radioengineering, 22(3), 818–827.
13.
go back to reference Kenyeres, J., Kenyeres, M. & Rupp, M. (2013). Experimental node failure analysis in WSNs. In 18th international conference on systems, signals and image processing, Sarajevo (pp. 1–5). Kenyeres, J., Kenyeres, M. & Rupp, M. (2013). Experimental node failure analysis in WSNs. In 18th international conference on systems, signals and image processing, Sarajevo (pp. 1–5).
14.
go back to reference Rahman, A. U., Alharby, A., Hasbullah, H., & Almuzaini, K. (2016). Corona based deployment strategies in wireless sensor network: A survey. Journal of Network and Computer Applications, 64, 176–193.CrossRef Rahman, A. U., Alharby, A., Hasbullah, H., & Almuzaini, K. (2016). Corona based deployment strategies in wireless sensor network: A survey. Journal of Network and Computer Applications, 64, 176–193.CrossRef
15.
go back to reference Lian, J., Naik, K., & Gordon, B. A. (2016). Data capacity improvement of wireless sensor networks using non-uniform sensor distribution. International Journal of Distributed Sensor Networks, 2(2), 121–145.CrossRef Lian, J., Naik, K., & Gordon, B. A. (2016). Data capacity improvement of wireless sensor networks using non-uniform sensor distribution. International Journal of Distributed Sensor Networks, 2(2), 121–145.CrossRef
16.
go back to reference Tang, J., Hao, B., & Sen, A. (2006). Relay node placement in large scale wireless sensor networks. Computer Communications, 29(4), 490–501.CrossRef Tang, J., Hao, B., & Sen, A. (2006). Relay node placement in large scale wireless sensor networks. Computer Communications, 29(4), 490–501.CrossRef
17.
go back to reference Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In 2003 IEEE wireless communications and networking WCNC (Vol. 3, pp. 1609–1614). Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In 2003 IEEE wireless communications and networking WCNC (Vol. 3, pp. 1609–1614).
18.
go back to reference Brooks, A., Makarenko, A., Kaupp, T., Williams, S. & Whyte, H.D. (2006). Implementation of an indoor active sensor network Brooks, A., Makarenko, A., Kaupp, T., Williams, S. & Whyte, H.D. (2006). Implementation of an indoor active sensor network
19.
go back to reference Petrushin, V. A., Wei, G., Shakil, O., Roqueiro, D. & Gershman, V. (2006) Multiple-sensor indoor surveillance system. In The 3rd Canadian conference on computer and robot vision (CRV’06) (p. 40). Petrushin, V. A., Wei, G., Shakil, O., Roqueiro, D. & Gershman, V. (2006) Multiple-sensor indoor surveillance system. In The 3rd Canadian conference on computer and robot vision (CRV’06) (p. 40).
20.
go back to reference Rahman, A. U., Hasbullah, H. & Sama N. U. (2012). Impact of Gaussian deployment strategies on the performance of wireless sensor network. In 2012 international conference on computer information science (ICCIS) (Vol. 2, pp. 771–776). Rahman, A. U., Hasbullah, H. & Sama N. U. (2012). Impact of Gaussian deployment strategies on the performance of wireless sensor network. In 2012 international conference on computer information science (ICCIS) (Vol. 2, pp. 771–776).
21.
go back to reference Ahmad, I., Rahman, A., Al-Shomrani, M. M., & Hasbullah, H. (2015). Two echelon architecture using relay node placement in wireless sensor network. Journal of Applied Sciences, 15, 214–222.CrossRef Ahmad, I., Rahman, A., Al-Shomrani, M. M., & Hasbullah, H. (2015). Two echelon architecture using relay node placement in wireless sensor network. Journal of Applied Sciences, 15, 214–222.CrossRef
22.
go back to reference Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Efficient energy utilization through optimum number of sensor node distribution in engineered corona-based (onsd-ec) wireless sensor network. Wireless Personal Communications, 73(3), 1227–1243.CrossRef Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Efficient energy utilization through optimum number of sensor node distribution in engineered corona-based (onsd-ec) wireless sensor network. Wireless Personal Communications, 73(3), 1227–1243.CrossRef
23.
go back to reference Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Sub-balanced energy consumption through engineered gaussian deployment strategies in corona-based wireless sensor network. Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Sub-balanced energy consumption through engineered gaussian deployment strategies in corona-based wireless sensor network.
24.
go back to reference Wang, D., Xie, B., & Agrawal, D. P. (2008). Coverage and lifetime optimization of wireless sensor networks with gaussian distribution. IEEE Transactions on Mobile Computing, 7(12), 1444–1458.CrossRef Wang, D., Xie, B., & Agrawal, D. P. (2008). Coverage and lifetime optimization of wireless sensor networks with gaussian distribution. IEEE Transactions on Mobile Computing, 7(12), 1444–1458.CrossRef
25.
go back to reference Halder, S., Ghosal, A., Chaudhuri, A. & DasBit, S. (2011). A probability density function for energy-balanced lifetime-enhancing node deployment in wsn. In Proceedings of the 2011 international conference on computational science and its applications—Volume Part IV, ICCSA’11 (pp. 472–487). Berlin: Springer. Halder, S., Ghosal, A., Chaudhuri, A. & DasBit, S. (2011). A probability density function for energy-balanced lifetime-enhancing node deployment in wsn. In Proceedings of the 2011 international conference on computational science and its applications—Volume Part IV, ICCSA’11 (pp. 472–487). Berlin: Springer.
26.
go back to reference Halder, S., & Ghosal, A. (2014). Is sensor deployment using Gaussian distribution energy balanced? In 2014 IEEE 11th consumer communications and networking conference (CCNC) (pp. 721–728). Halder, S., & Ghosal, A. (2014). Is sensor deployment using Gaussian distribution energy balanced? In 2014 IEEE 11th consumer communications and networking conference (CCNC) (pp. 721–728).
27.
go back to reference Halder, S., & DasBit, S. (2014). Design of a probability density function targeting energy-efficient node deployment in wireless sensor networks. IEEE Transactions on Network and Service Management, 11(2), 204–219.CrossRef Halder, S., & DasBit, S. (2014). Design of a probability density function targeting energy-efficient node deployment in wireless sensor networks. IEEE Transactions on Network and Service Management, 11(2), 204–219.CrossRef
28.
go back to reference Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2017) Energy efficient approach in wireless sensor networks using game theoretic approach and ant colony optimization. Wireless Personal Communications, 95(3), 3333–3355.CrossRef Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2017) Energy efficient approach in wireless sensor networks using game theoretic approach and ant colony optimization. Wireless Personal Communications, 95(3), 3333–3355.CrossRef
29.
go back to reference Tripathi, R. K., Singh, Y. N., & Verma, N. K. (2012). N-leach, a balanced cost cluster-heads selection algorithm for wireless sensor network. In 2012 national conference on communications (NCC) (pp. 1–5). Tripathi, R. K., Singh, Y. N., & Verma, N. K. (2012). N-leach, a balanced cost cluster-heads selection algorithm for wireless sensor network. In 2012 national conference on communications (NCC) (pp. 1–5).
30.
go back to reference Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory. New York, NY: Cambridge University Press.CrossRefMATH Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory. New York, NY: Cambridge University Press.CrossRefMATH
31.
go back to reference Voulkidis, A. C., Anastasopoulos, M. P., & Cottis, P. G. (2013). Energy efficiency in wireless sensor networks: A game-theoretic approach based on coalition formation. ACM Transactions on Sensor Networks, 9(4), 43:1–43:27.CrossRef Voulkidis, A. C., Anastasopoulos, M. P., & Cottis, P. G. (2013). Energy efficiency in wireless sensor networks: A game-theoretic approach based on coalition formation. ACM Transactions on Sensor Networks, 9(4), 43:1–43:27.CrossRef
32.
go back to reference Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Scituate, MA: Bradford Company.MATH Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Scituate, MA: Bradford Company.MATH
33.
go back to reference Sangwan, A., & Singh, R. P. (2015). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80(4), 1475–1500.CrossRef Sangwan, A., & Singh, R. P. (2015). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80(4), 1475–1500.CrossRef
34.
go back to reference Halder, S., & Dasbit, S. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal of Network and Computer Applications, 38, 106–124.CrossRef Halder, S., & Dasbit, S. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal of Network and Computer Applications, 38, 106–124.CrossRef
Metadata
Title
Design of Probability Density Function Targeting Energy Efficient Network for Coalition Based WSNs
Authors
Richa Mishra
Vivekanand Jha
Rajeev K. Tripathi
Ajay K. Sharma
Publication date
19-12-2017
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2018
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-5134-y

Other articles of this Issue 2/2018

Wireless Personal Communications 2/2018 Go to the issue