Skip to main content
Erschienen in: Wireless Personal Communications 2/2018

19.12.2017

Design of Probability Density Function Targeting Energy Efficient Network for Coalition Based WSNs

verfasst von: Richa Mishra, Vivekanand Jha, Rajeev K. Tripathi, Ajay K. Sharma

Erschienen in: Wireless Personal Communications | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy consumption is one of the important issues in wireless sensor network that rely on non chargeable batteries for power. Also, the sensor network has to maintain a desired sensing coverage area along with periodically sending of the sensed data to the base station. Therefore, coverage and the lifetime are the two important issues that need to be addressed. Effective deployment of wireless sensors is a major concern as the coverage and lifetime of any wireless sensor network depends on it. In this paper, we propose the design of a Probability Density Function (PDF) targeting the desired coverage, and energy efficient node deployment scheme. The suitability of the proposed PDF based node distribution to model the network architecture considered in this work has been analyzed. The PDF divides the deployment area into concentric coronas and provides a probability of occurrence of a node within any corona. Further, the performance of the proposed PDF is evaluated in terms of the coverage, the number of transmissions of packets and the lifetime of the network. The scheme is compared with the existing node deployment schemes based on various distributions. The percentage gain of the proposed PDF based node deployment is 32\(\%\) more than that when compared with the existing schemes. Thus, the simulation results obtained confirm the schemes superiority over the other existing schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mishra, R., Kumar, P., Chaudhury, S., & Indu, S. (2013). Monitoring a large surveillance space through distributed face matching. In 2013 fourth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG) (pp. 1–5). Mishra, R., Kumar, P., Chaudhury, S., & Indu, S. (2013). Monitoring a large surveillance space through distributed face matching. In 2013 fourth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG) (pp. 1–5).
2.
Zurück zum Zitat Rajwade, K. C. & Gawali, D. H. (2016). Wearable sensors based pilgrim tracking and health monitoring system. In 2016 international conference on computing communication control and automation (ICCUBEA) (pp. 1–5). Rajwade, K. C. & Gawali, D. H. (2016). Wearable sensors based pilgrim tracking and health monitoring system. In 2016 international conference on computing communication control and automation (ICCUBEA) (pp. 1–5).
3.
Zurück zum Zitat Dencker, F., Wurz, M., Dubrovskiy, S. & Koroleva, E. (2016). An application report: Protective thin film layers for high temperature sensor technology. In 2016 IEEE NW Russia young researchers in electrical and electronic engineering conference (EIConRusNW) (pp. 32–36). Dencker, F., Wurz, M., Dubrovskiy, S. & Koroleva, E. (2016). An application report: Protective thin film layers for high temperature sensor technology. In 2016 IEEE NW Russia young researchers in electrical and electronic engineering conference (EIConRusNW) (pp. 32–36).
5.
Zurück zum Zitat Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (Vol. 2). Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences (Vol. 2).
6.
Zurück zum Zitat Farooq, M. O., Dogar, A. B., & Shah, G. A. (2010). Mr-leach: Multi-hop routing with low energy adaptive clustering hierarchy. In 2010 fourth international conference on sensor technologies and applications (SENSORCOMM) (pp. 262–268). Farooq, M. O., Dogar, A. B., & Shah, G. A. (2010). Mr-leach: Multi-hop routing with low energy adaptive clustering hierarchy. In 2010 fourth international conference on sensor technologies and applications (SENSORCOMM) (pp. 262–268).
7.
Zurück zum Zitat Ye, M., Li, C., Chen, G., & Wu, J. (2005). Eecs: An energy efficient clustering scheme in wireless sensor networks. In PCCC 2005 24th IEEE international performance computing, and communications conference (pp. 535–540). Ye, M., Li, C., Chen, G., & Wu, J. (2005). Eecs: An energy efficient clustering scheme in wireless sensor networks. In PCCC 2005 24th IEEE international performance computing, and communications conference (pp. 535–540).
8.
Zurück zum Zitat Lara, R., Bentez, D., Caamao, A., Mennaro, M., & Rojo-lvarez, J. L. (2015). On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks. IEEE Sensors Journal, 15(6), 3514–3523.CrossRef Lara, R., Bentez, D., Caamao, A., Mennaro, M., & Rojo-lvarez, J. L. (2015). On real-time performance evaluation of volcano-monitoring systems with wireless sensor networks. IEEE Sensors Journal, 15(6), 3514–3523.CrossRef
9.
Zurück zum Zitat Bandyopadhyay, S. & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In INFOCOM 2003 Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 3, pp. 1713–1723). Bandyopadhyay, S. & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In INFOCOM 2003 Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 3, pp. 1713–1723).
10.
Zurück zum Zitat Kenyeres, M., Kenyeres, J., & Skorpil, V. (2015). Split distributed computing in wireless sensor networks. Radioengineering, 24(3), 749–756.CrossRef Kenyeres, M., Kenyeres, J., & Skorpil, V. (2015). Split distributed computing in wireless sensor networks. Radioengineering, 24(3), 749–756.CrossRef
11.
Zurück zum Zitat Kenyeres, M., Kenyeres, J. & Rupp, M. (2011). WSN implementation of the average consensus algorithm. In 11th European wireless conference, Vienna (pp. 1–8). Kenyeres, M., Kenyeres, J. & Rupp, M. (2011). WSN implementation of the average consensus algorithm. In 11th European wireless conference, Vienna (pp. 1–8).
12.
Zurück zum Zitat Kenyeres, J., Kenyeres, M., & Rupp, M. (2013). Connectivity based self-localization in WSNs. Radioengineering, 22(3), 818–827. Kenyeres, J., Kenyeres, M., & Rupp, M. (2013). Connectivity based self-localization in WSNs. Radioengineering, 22(3), 818–827.
13.
Zurück zum Zitat Kenyeres, J., Kenyeres, M. & Rupp, M. (2013). Experimental node failure analysis in WSNs. In 18th international conference on systems, signals and image processing, Sarajevo (pp. 1–5). Kenyeres, J., Kenyeres, M. & Rupp, M. (2013). Experimental node failure analysis in WSNs. In 18th international conference on systems, signals and image processing, Sarajevo (pp. 1–5).
14.
Zurück zum Zitat Rahman, A. U., Alharby, A., Hasbullah, H., & Almuzaini, K. (2016). Corona based deployment strategies in wireless sensor network: A survey. Journal of Network and Computer Applications, 64, 176–193.CrossRef Rahman, A. U., Alharby, A., Hasbullah, H., & Almuzaini, K. (2016). Corona based deployment strategies in wireless sensor network: A survey. Journal of Network and Computer Applications, 64, 176–193.CrossRef
15.
Zurück zum Zitat Lian, J., Naik, K., & Gordon, B. A. (2016). Data capacity improvement of wireless sensor networks using non-uniform sensor distribution. International Journal of Distributed Sensor Networks, 2(2), 121–145.CrossRef Lian, J., Naik, K., & Gordon, B. A. (2016). Data capacity improvement of wireless sensor networks using non-uniform sensor distribution. International Journal of Distributed Sensor Networks, 2(2), 121–145.CrossRef
16.
Zurück zum Zitat Tang, J., Hao, B., & Sen, A. (2006). Relay node placement in large scale wireless sensor networks. Computer Communications, 29(4), 490–501.CrossRef Tang, J., Hao, B., & Sen, A. (2006). Relay node placement in large scale wireless sensor networks. Computer Communications, 29(4), 490–501.CrossRef
17.
Zurück zum Zitat Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In 2003 IEEE wireless communications and networking WCNC (Vol. 3, pp. 1609–1614). Dhillon, S. S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In 2003 IEEE wireless communications and networking WCNC (Vol. 3, pp. 1609–1614).
18.
Zurück zum Zitat Brooks, A., Makarenko, A., Kaupp, T., Williams, S. & Whyte, H.D. (2006). Implementation of an indoor active sensor network Brooks, A., Makarenko, A., Kaupp, T., Williams, S. & Whyte, H.D. (2006). Implementation of an indoor active sensor network
19.
Zurück zum Zitat Petrushin, V. A., Wei, G., Shakil, O., Roqueiro, D. & Gershman, V. (2006) Multiple-sensor indoor surveillance system. In The 3rd Canadian conference on computer and robot vision (CRV’06) (p. 40). Petrushin, V. A., Wei, G., Shakil, O., Roqueiro, D. & Gershman, V. (2006) Multiple-sensor indoor surveillance system. In The 3rd Canadian conference on computer and robot vision (CRV’06) (p. 40).
20.
Zurück zum Zitat Rahman, A. U., Hasbullah, H. & Sama N. U. (2012). Impact of Gaussian deployment strategies on the performance of wireless sensor network. In 2012 international conference on computer information science (ICCIS) (Vol. 2, pp. 771–776). Rahman, A. U., Hasbullah, H. & Sama N. U. (2012). Impact of Gaussian deployment strategies on the performance of wireless sensor network. In 2012 international conference on computer information science (ICCIS) (Vol. 2, pp. 771–776).
21.
Zurück zum Zitat Ahmad, I., Rahman, A., Al-Shomrani, M. M., & Hasbullah, H. (2015). Two echelon architecture using relay node placement in wireless sensor network. Journal of Applied Sciences, 15, 214–222.CrossRef Ahmad, I., Rahman, A., Al-Shomrani, M. M., & Hasbullah, H. (2015). Two echelon architecture using relay node placement in wireless sensor network. Journal of Applied Sciences, 15, 214–222.CrossRef
22.
Zurück zum Zitat Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Efficient energy utilization through optimum number of sensor node distribution in engineered corona-based (onsd-ec) wireless sensor network. Wireless Personal Communications, 73(3), 1227–1243.CrossRef Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Efficient energy utilization through optimum number of sensor node distribution in engineered corona-based (onsd-ec) wireless sensor network. Wireless Personal Communications, 73(3), 1227–1243.CrossRef
23.
Zurück zum Zitat Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Sub-balanced energy consumption through engineered gaussian deployment strategies in corona-based wireless sensor network. Rahman, A. U., Hasbullah, H., & Sama, N. U. (2013). Sub-balanced energy consumption through engineered gaussian deployment strategies in corona-based wireless sensor network.
24.
Zurück zum Zitat Wang, D., Xie, B., & Agrawal, D. P. (2008). Coverage and lifetime optimization of wireless sensor networks with gaussian distribution. IEEE Transactions on Mobile Computing, 7(12), 1444–1458.CrossRef Wang, D., Xie, B., & Agrawal, D. P. (2008). Coverage and lifetime optimization of wireless sensor networks with gaussian distribution. IEEE Transactions on Mobile Computing, 7(12), 1444–1458.CrossRef
25.
Zurück zum Zitat Halder, S., Ghosal, A., Chaudhuri, A. & DasBit, S. (2011). A probability density function for energy-balanced lifetime-enhancing node deployment in wsn. In Proceedings of the 2011 international conference on computational science and its applications—Volume Part IV, ICCSA’11 (pp. 472–487). Berlin: Springer. Halder, S., Ghosal, A., Chaudhuri, A. & DasBit, S. (2011). A probability density function for energy-balanced lifetime-enhancing node deployment in wsn. In Proceedings of the 2011 international conference on computational science and its applications—Volume Part IV, ICCSA’11 (pp. 472–487). Berlin: Springer.
26.
Zurück zum Zitat Halder, S., & Ghosal, A. (2014). Is sensor deployment using Gaussian distribution energy balanced? In 2014 IEEE 11th consumer communications and networking conference (CCNC) (pp. 721–728). Halder, S., & Ghosal, A. (2014). Is sensor deployment using Gaussian distribution energy balanced? In 2014 IEEE 11th consumer communications and networking conference (CCNC) (pp. 721–728).
27.
Zurück zum Zitat Halder, S., & DasBit, S. (2014). Design of a probability density function targeting energy-efficient node deployment in wireless sensor networks. IEEE Transactions on Network and Service Management, 11(2), 204–219.CrossRef Halder, S., & DasBit, S. (2014). Design of a probability density function targeting energy-efficient node deployment in wireless sensor networks. IEEE Transactions on Network and Service Management, 11(2), 204–219.CrossRef
28.
Zurück zum Zitat Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2017) Energy efficient approach in wireless sensor networks using game theoretic approach and ant colony optimization. Wireless Personal Communications, 95(3), 3333–3355.CrossRef Mishra, R., Jha, V., Tripathi, R. K., & Sharma, A. K. (2017) Energy efficient approach in wireless sensor networks using game theoretic approach and ant colony optimization. Wireless Personal Communications, 95(3), 3333–3355.CrossRef
29.
Zurück zum Zitat Tripathi, R. K., Singh, Y. N., & Verma, N. K. (2012). N-leach, a balanced cost cluster-heads selection algorithm for wireless sensor network. In 2012 national conference on communications (NCC) (pp. 1–5). Tripathi, R. K., Singh, Y. N., & Verma, N. K. (2012). N-leach, a balanced cost cluster-heads selection algorithm for wireless sensor network. In 2012 national conference on communications (NCC) (pp. 1–5).
30.
Zurück zum Zitat Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory. New York, NY: Cambridge University Press.CrossRefMATH Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory. New York, NY: Cambridge University Press.CrossRefMATH
31.
Zurück zum Zitat Voulkidis, A. C., Anastasopoulos, M. P., & Cottis, P. G. (2013). Energy efficiency in wireless sensor networks: A game-theoretic approach based on coalition formation. ACM Transactions on Sensor Networks, 9(4), 43:1–43:27.CrossRef Voulkidis, A. C., Anastasopoulos, M. P., & Cottis, P. G. (2013). Energy efficiency in wireless sensor networks: A game-theoretic approach based on coalition formation. ACM Transactions on Sensor Networks, 9(4), 43:1–43:27.CrossRef
32.
Zurück zum Zitat Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Scituate, MA: Bradford Company.MATH Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Scituate, MA: Bradford Company.MATH
33.
Zurück zum Zitat Sangwan, A., & Singh, R. P. (2015). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80(4), 1475–1500.CrossRef Sangwan, A., & Singh, R. P. (2015). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80(4), 1475–1500.CrossRef
34.
Zurück zum Zitat Halder, S., & Dasbit, S. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal of Network and Computer Applications, 38, 106–124.CrossRef Halder, S., & Dasbit, S. (2014). Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. Journal of Network and Computer Applications, 38, 106–124.CrossRef
Metadaten
Titel
Design of Probability Density Function Targeting Energy Efficient Network for Coalition Based WSNs
verfasst von
Richa Mishra
Vivekanand Jha
Rajeev K. Tripathi
Ajay K. Sharma
Publikationsdatum
19.12.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-5134-y

Weitere Artikel der Ausgabe 2/2018

Wireless Personal Communications 2/2018 Zur Ausgabe

Neuer Inhalt