Skip to main content
Top

01-04-2014 | Technical Paper

Design of silicon micro-resonators with low mechanical and optical losses for quantum optics experiments

Authors: A. Borrielli, M. Bonaldi, E. Serra, A. Bagolini, P. Bellutti, F. S. Cataliotti, F. Marin, F. Marino, A. Pontin, G. A. Prodi, G. Pandraud, P. M. Sarro, G. Lorito, T. Zoumpoulidis

Published in: Microsystem Technologies | Issue 4-5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The interaction of the radiation pressure with micro-mechanical oscillators is earning a growing interest for its wide-range applications and for fundamental research. In this contribution we describe the fabrication of a family of opto-mechanical devices specifically designed to ease the detection of ponderomotive squeezing and of entanglement between macroscopic objects and light. These phenomena are not easily observed, due to the overwhelming effects of classical noise sources of thermal origin with respect to the weak quantum fluctuations of the radiation pressure. A low thermal noise background is required, together with a weak interaction between the micro-mirror and this background (i.e. high mechanical quality factors). In the development of our opto-mechanical devices, we heve explored an approach focused on relatively thick silicon oscillators with high reflectivity coating. The relatively high mass is compensated by the capability to manage high power at low temperatures, owing to a favourable geometric factor (thicker connectors) and the excellent thermal conductivity of silicon crystals at cryogenic temperature. We have measured at cryogenic temperatures mechanical quality factors up to 105 in a micro-oscillator designed to reduce as much as possible the strain in the coating layer and the consequent energy dissipation. This design improves an approach applied in micro-mirror and micro-cantilevers, where the coated surface is reduced as much as possible to improve the quality factor. The deposition of the highly reflective coating layer has been carefully integrated in the micro-machining process to preserve its low optical losses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anetsberger G, Rivière R, Schliesser A, Arcizet O, Kippenberg TJ (2008) Ultralow-dissipation optomechanical resonators on a chip. Nat Photonics 2:627CrossRef Anetsberger G, Rivière R, Schliesser A, Arcizet O, Kippenberg TJ (2008) Ultralow-dissipation optomechanical resonators on a chip. Nat Photonics 2:627CrossRef
go back to reference Aspelmeyer M, Gröblacher S, Hammerer K, Kiesel NJ (2010) Quantum optomechanics-throwing a glance. J Opt Soc Am B 27:A189CrossRef Aspelmeyer M, Gröblacher S, Hammerer K, Kiesel NJ (2010) Quantum optomechanics-throwing a glance. J Opt Soc Am B 27:A189CrossRef
go back to reference Borrielli A, Bonaldi M, Serra E, Bagolini A, Conti L (2011) Wideband mechanical response of a high-Q silicon double-paddle oscillator. J Micromech Microeng 21:065019CrossRef Borrielli A, Bonaldi M, Serra E, Bagolini A, Conti L (2011) Wideband mechanical response of a high-Q silicon double-paddle oscillator. J Micromech Microeng 21:065019CrossRef
go back to reference Chan J, Mayer Alegre TP, Safavi-Naeini AH, Hill JT, Krause A, Gröblacher S, Aspelmeyer M, Painter O (2011) Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478:89CrossRef Chan J, Mayer Alegre TP, Safavi-Naeini AH, Hill JT, Krause A, Gröblacher S, Aspelmeyer M, Painter O (2011) Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478:89CrossRef
go back to reference Clerk AA, Marquardt F, Jacobs K (2008) Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J Phys 10:095010CrossRef Clerk AA, Marquardt F, Jacobs K (2008) Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J Phys 10:095010CrossRef
go back to reference Cole GD, Wilson-Rae I, Werbach K, Vanner MR, Aspelmeyer M (2011) Phonon-tunnelling dissipation in mechanical resonators. Nat Commun 2:231CrossRef Cole GD, Wilson-Rae I, Werbach K, Vanner MR, Aspelmeyer M (2011) Phonon-tunnelling dissipation in mechanical resonators. Nat Commun 2:231CrossRef
go back to reference Cole GD, Gröblacher S, Gugler K, Gigan S, Aspelmeyer M (2008) Monocrystalline Al(x)Ga(1-x)As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl Phys Lett 92:261108CrossRef Cole GD, Gröblacher S, Gugler K, Gigan S, Aspelmeyer M (2008) Monocrystalline Al(x)Ga(1-x)As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl Phys Lett 92:261108CrossRef
go back to reference Conti L, Bonaldi M, Rondoni L (2010) RareNoise: non-equilibrium effects in detectors of gravitational waves. Class Quantum Grav 27:084032CrossRefMathSciNet Conti L, Bonaldi M, Rondoni L (2010) RareNoise: non-equilibrium effects in detectors of gravitational waves. Class Quantum Grav 27:084032CrossRefMathSciNet
go back to reference Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S (1994) Quantum-noise reduction using a cavity with a movable mirror. Phys Rev A 49:1337CrossRef Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E, Reynaud S (1994) Quantum-noise reduction using a cavity with a movable mirror. Phys Rev A 49:1337CrossRef
go back to reference Farsi A, Siciliani de Cumis M, Marino F, Marin F (2012) Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature. J Appl Phys 111:043101CrossRef Farsi A, Siciliani de Cumis M, Marino F, Marin F (2012) Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature. J Appl Phys 111:043101CrossRef
go back to reference Favero I, Karrai K (2009) Optomechanics of deformable optical cavities. Nat Photonics 3:201CrossRef Favero I, Karrai K (2009) Optomechanics of deformable optical cavities. Nat Photonics 3:201CrossRef
go back to reference Gigan S, Böhm HR, Paternostro M, Blaser F, Langer G, Hertzberg JB, Schwab KC, Bäuerle D, Aspelmeyer M, Zeilinger A (2006) Self-cooling of a micromirror by radiation pressure. Nature 444:67CrossRef Gigan S, Böhm HR, Paternostro M, Blaser F, Langer G, Hertzberg JB, Schwab KC, Bäuerle D, Aspelmeyer M, Zeilinger A (2006) Self-cooling of a micromirror by radiation pressure. Nature 444:67CrossRef
go back to reference Gröblacher S, Hertzberg JB, Vanner MR, Cole GD, Gigan S, Schwab KC, Aspelmeyer M (2009a) Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat Phys 5:485CrossRef Gröblacher S, Hertzberg JB, Vanner MR, Cole GD, Gigan S, Schwab KC, Aspelmeyer M (2009a) Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat Phys 5:485CrossRef
go back to reference Gröblacher S, Hammerer K, Vanner MR, Aspelmeyer M (2009b) Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460:724CrossRef Gröblacher S, Hammerer K, Vanner MR, Aspelmeyer M (2009b) Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460:724CrossRef
go back to reference Jacobs K, Tombesi P, Collet MJ, Walls DF (1994) Quantum-nondemolition measurement of photon number using radiation pressure. Phys Rev A 49:1961CrossRef Jacobs K, Tombesi P, Collet MJ, Walls DF (1994) Quantum-nondemolition measurement of photon number using radiation pressure. Phys Rev A 49:1961CrossRef
go back to reference Kippenberg TJ, Vahala KJ (2008) Cavity optomechanics: back-action at the mesoscale. Science 321:1172CrossRef Kippenberg TJ, Vahala KJ (2008) Cavity optomechanics: back-action at the mesoscale. Science 321:1172CrossRef
go back to reference Kleckner D, Pepper B, Jeffrey E, Sonin P, Thon SM, Bouwmeester D (2011) Optomechanical trampoline resonators. Opt Express 19:19708CrossRef Kleckner D, Pepper B, Jeffrey E, Sonin P, Thon SM, Bouwmeester D (2011) Optomechanical trampoline resonators. Opt Express 19:19708CrossRef
go back to reference Klitsner T, VanCleve JE, Fischer HE, Pohl RO (1988) Phonon radiative heat transfer and surface scattering. Phys Rev B 38:7576CrossRef Klitsner T, VanCleve JE, Fischer HE, Pohl RO (1988) Phonon radiative heat transfer and surface scattering. Phys Rev B 38:7576CrossRef
go back to reference Kuhn AG, Bahriz M, Ducloux O, Chartier C, Le Traon O, Briant T, Cohadon PF, Heidmann A, Michel C, Pinard L, Flaminio R (2011) A micropillar for cavity optomechanics. Appl Phys Lett 99:121103CrossRef Kuhn AG, Bahriz M, Ducloux O, Chartier C, Le Traon O, Briant T, Cohadon PF, Heidmann A, Michel C, Pinard L, Flaminio R (2011) A micropillar for cavity optomechanics. Appl Phys Lett 99:121103CrossRef
go back to reference Liu X, Vignola JF, Simpson HJ, Lemon BR, Houston BH, DM Photiadis (2005) A loss mechanism study of a very high Q silicon micromechanical oscillator. J Appl Phys 97:023524CrossRef Liu X, Vignola JF, Simpson HJ, Lemon BR, Houston BH, DM Photiadis (2005) A loss mechanism study of a very high Q silicon micromechanical oscillator. J Appl Phys 97:023524CrossRef
go back to reference Mancini S, Tombesi P (1994) Quantum noise reduction by radiation pressure. Phys Rev A 49:4055CrossRef Mancini S, Tombesi P (1994) Quantum noise reduction by radiation pressure. Phys Rev A 49:4055CrossRef
go back to reference Marino F, Cataliotti FS, Farsi A, Siciliani de Cumis M, Marin F(2010) Classical signature of ponderomotive squeezing in a suspended mirror resonator. Phys Rev Lett 104:073601CrossRef Marino F, Cataliotti FS, Farsi A, Siciliani de Cumis M, Marin F(2010) Classical signature of ponderomotive squeezing in a suspended mirror resonator. Phys Rev Lett 104:073601CrossRef
go back to reference Mohanty P, Harrington DA, Ekinci KL, Yang YT, Murphy MJ, Roukes ML (2002) Intrinsic dissipation in high-frequency micromechanical resonators. Phys Rev B 66:085416CrossRef Mohanty P, Harrington DA, Ekinci KL, Yang YT, Murphy MJ, Roukes ML (2002) Intrinsic dissipation in high-frequency micromechanical resonators. Phys Rev B 66:085416CrossRef
go back to reference Pontin A, Bonaldi M, Borrielli A, Cataliotti FS, Marino F, Prodi GA, Serra E, Marin F (2014) Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring. Phys Rev Lett 112:023601CrossRef Pontin A, Bonaldi M, Borrielli A, Cataliotti FS, Marino F, Prodi GA, Serra E, Marin F (2014) Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring. Phys Rev Lett 112:023601CrossRef
go back to reference Purdy TP, Peterson RW, Regal CA (2013a) Observation of radiation pressure shot noise on a macroscopic object. Science 339:801CrossRef Purdy TP, Peterson RW, Regal CA (2013a) Observation of radiation pressure shot noise on a macroscopic object. Science 339:801CrossRef
go back to reference Purdy TP, Yu P-L, Peterson RW, Kampel NS, Regal CA (2013b) SStrong optomechanical squeezing of light. Phys Rev X 3:031012 Purdy TP, Yu P-L, Peterson RW, Kampel NS, Regal CA (2013b) SStrong optomechanical squeezing of light. Phys Rev X 3:031012
go back to reference Safavi-Naeini AH, Gröblacher S, Hill JT, Chan J, Aspelmeyer M, Painter O (2013) Squeezed light from a silicon micromechanical resonator. Nature 500:185CrossRef Safavi-Naeini AH, Gröblacher S, Hill JT, Chan J, Aspelmeyer M, Painter O (2013) Squeezed light from a silicon micromechanical resonator. Nature 500:185CrossRef
go back to reference Safavi-Naeini AH, Chan J, Hill JT, Mayer Alegre TP, Krause A, Painter O (2012) Observation of quantum motion of a nanomechanical resonator. Phys Rev Lett 108:033602CrossRef Safavi-Naeini AH, Chan J, Hill JT, Mayer Alegre TP, Krause A, Painter O (2012) Observation of quantum motion of a nanomechanical resonator. Phys Rev Lett 108:033602CrossRef
go back to reference Samarao AK, Ayazi F (2010) Quality factor sensitivity to crystallographic axis misalignment in silicon micromechanical resonators. Solid-State Sensors, Actuators, and Microsystems Workshop Hilton Head Island, South Carolina, June 6–10 Samarao AK, Ayazi F (2010) Quality factor sensitivity to crystallographic axis misalignment in silicon micromechanical resonators. Solid-State Sensors, Actuators, and Microsystems Workshop Hilton Head Island, South Carolina, June 6–10
go back to reference Schliesser A, Rivière R, Anetsberger G, Arcizet O, Kippenberg TJ (2008) Resolved-sideband cooling of a micromechanical oscillator. Nat Phys 4:415CrossRef Schliesser A, Rivière R, Anetsberger G, Arcizet O, Kippenberg TJ (2008) Resolved-sideband cooling of a micromechanical oscillator. Nat Phys 4:415CrossRef
go back to reference Serra E, Borrielli A, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Bonaldi M (2012a) A “low-deformation mirror” micro-oscillator with ultra-low optical and mechanical losses. Appl Phys Lett 101:071101CrossRef Serra E, Borrielli A, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Bonaldi M (2012a) A “low-deformation mirror” micro-oscillator with ultra-low optical and mechanical losses. Appl Phys Lett 101:071101CrossRef
go back to reference Serra E, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Bonaldi M (2012b) Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating. J Appl Phys 111:113109CrossRef Serra E, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Bonaldi M (2012b) Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating. J Appl Phys 111:113109CrossRef
go back to reference Serra E, Borrielli A, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Bonaldi M (2012c) Ultralow-dissipation micro-oscillator for quantum optomechanics. Phys Rev A 86:051801CrossRef Serra E, Borrielli A, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Bonaldi M (2012c) Ultralow-dissipation micro-oscillator for quantum optomechanics. Phys Rev A 86:051801CrossRef
go back to reference Serra E, Bagolini A, Borrielli A, Boscardin M, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Vannoni M, Bonaldi M (2013) Fabrication of low loss MOMS resonators for quantum optics experiments. J Micromech Microeng 23:085010CrossRef Serra E, Bagolini A, Borrielli A, Boscardin M, Cataliotti FS, Marin F, Marino F, Pontin A, Prodi GA, Vannoni M, Bonaldi M (2013) Fabrication of low loss MOMS resonators for quantum optics experiments. J Micromech Microeng 23:085010CrossRef
go back to reference Sosale G, Das K, Frèchette L, Vengallatore S (2011) Controlling damping and quality factors of silicon microcantilevers by selective metallization. J Micromech Microeng 21:105010CrossRef Sosale G, Das K, Frèchette L, Vengallatore S (2011) Controlling damping and quality factors of silicon microcantilevers by selective metallization. J Micromech Microeng 21:105010CrossRef
go back to reference Thompson JD, Zwickl BM, Jayich AM, Marquardt F, Girvin SM, Harris JGE (2008) Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452:72CrossRef Thompson JD, Zwickl BM, Jayich AM, Marquardt F, Girvin SM, Harris JGE (2008) Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452:72CrossRef
go back to reference Verlot P, Tavernarakis A, Briant T, Cohadon P-F, Heidmann A (2009) Scheme to probe optomechanical correlations between two optical beams down to the quantum level. Phys Rev Lett 102:103601CrossRef Verlot P, Tavernarakis A, Briant T, Cohadon P-F, Heidmann A (2009) Scheme to probe optomechanical correlations between two optical beams down to the quantum level. Phys Rev Lett 102:103601CrossRef
go back to reference Vitali D, Gigan S, Ferreira A, Böhm HR, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M (2007) Optomechanical entanglement between a movable mirror and a cavity field. Phys Rev Lett 98:030405CrossRef Vitali D, Gigan S, Ferreira A, Böhm HR, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M (2007) Optomechanical entanglement between a movable mirror and a cavity field. Phys Rev Lett 98:030405CrossRef
go back to reference Waggoner PS, Craighead HG (2009) The relationship between material properties, device design, and the sensitivity of resonant mechanical sensors. J Appl Phys 105:054306CrossRef Waggoner PS, Craighead HG (2009) The relationship between material properties, device design, and the sensitivity of resonant mechanical sensors. J Appl Phys 105:054306CrossRef
go back to reference Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg TJ (2010) Optomechanically induced transparency. Science 330:1520CrossRef Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg TJ (2010) Optomechanically induced transparency. Science 330:1520CrossRef
go back to reference Wilson DJ, Regal CA, Papp SB, Kimble HJ (2009) Cavity optomechanics with stoichiometric SiN Films. Phys Rev Lett 103:207204CrossRef Wilson DJ, Regal CA, Papp SB, Kimble HJ (2009) Cavity optomechanics with stoichiometric SiN Films. Phys Rev Lett 103:207204CrossRef
go back to reference Yamamoto K, Miyoki S, Uchiyama T, Ishitsuka H, Ohashi M, Kuroda K, Tomaru T, Sato N, Suzuki T, Haruyama T, Yamamoto A, Shintomi T, Numata K, Waseda K, Ito K, Watanabe K (2006) Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection. Phys Rev D 74:022002CrossRef Yamamoto K, Miyoki S, Uchiyama T, Ishitsuka H, Ohashi M, Kuroda K, Tomaru T, Sato N, Suzuki T, Haruyama T, Yamamoto A, Shintomi T, Numata K, Waseda K, Ito K, Watanabe K (2006) Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection. Phys Rev D 74:022002CrossRef
go back to reference Zendri JP, Bignotto M, Bonaldi M, Cerdonio M, Conti L, Ferrario L, Liguori N, Maraner A, Serra E, Taffarello L (2008) Loss budget of a setup for measuring mechanical dissipations of silicon wafers between 300 and 4K. Rev Sci Instrum 79:033901CrossRef Zendri JP, Bignotto M, Bonaldi M, Cerdonio M, Conti L, Ferrario L, Liguori N, Maraner A, Serra E, Taffarello L (2008) Loss budget of a setup for measuring mechanical dissipations of silicon wafers between 300 and 4K. Rev Sci Instrum 79:033901CrossRef
Metadata
Title
Design of silicon micro-resonators with low mechanical and optical losses for quantum optics experiments
Authors
A. Borrielli
M. Bonaldi
E. Serra
A. Bagolini
P. Bellutti
F. S. Cataliotti
F. Marin
F. Marino
A. Pontin
G. A. Prodi
G. Pandraud
P. M. Sarro
G. Lorito
T. Zoumpoulidis
Publication date
01-04-2014
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 4-5/2014
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2078-y